Menu Close

given-z-lim-n-n-z-z-1-z-n-n-z-proof-that-i-z-1-z-z-ii-wiertrass-definition-of-gamma-function-1-z-ze-z-m-1-1-z-m-e-z-m-is-euler-macheroni-con




Question Number 2891 by 123456 last updated on 29/Nov/15
given  Γ(z)=lim_(n→+∞)  ((n!)/(z(z+1)∙∙∙(z+n)))n^z   proof that  i)  Γ(z+1)=zΓ(z)  ii) wiertrass definition of gamma function  (1/(Γ(z)))=ze^(zγ) Π_(m=1) ^(+∞)  (1+(z/m))e^(−(z/m))   γ is euler macheroni constant (Q2818,Q2783)
givenΓ(z)=limn+n!z(z+1)(z+n)nzproofthati)Γ(z+1)=zΓ(z)ii)wiertrassdefinitionofgammafunction1Γ(z)=zezγ+m=1(1+zm)ezmγiseulermacheroniconstant(Q2818,Q2783)
Commented by Filup last updated on 30/Nov/15
z(z+1)(z+2)∙∙∙(z+n)=(((z+n)!)/((z−1)!))  ∴Γ(z)=lim_(n→+∞) ((n!∙(z−1)!)/((z+n)!))∙n^z
z(z+1)(z+2)(z+n)=(z+n)!(z1)!Γ(z)=limn+n!(z1)!(z+n)!nz
Answered by Filup last updated on 30/Nov/15
Γ(z)=(z−1)(z−2)∙∙∙×3×2×1  Γ(z+1)=z(z−1)(z−2)∙∙∙×3×2×1  Γ(z+1)=zΓ(z)    I′m sure you wanted a proof in terms of  the limit you gave above, but I am  unsure as to how to achieve the result  you most likely desired. Maybe you can  further prove by applying the limit?    I shall update this post if I can. I might  have an idea to prove (i) in terms  of the limit
Γ(z)=(z1)(z2)×3×2×1Γ(z+1)=z(z1)(z2)×3×2×1Γ(z+1)=zΓ(z)Imsureyouwantedaproofintermsofthelimityougaveabove,butIamunsureastohowtoachievetheresultyoumostlikelydesired.Maybeyoucanfurtherprovebyapplyingthelimit?IshallupdatethispostifIcan.Imighthaveanideatoprove(i)intermsofthelimit
Commented by 123456 last updated on 30/Nov/15
the limit above is the most general definition  possible for Γ (analitic continuation of Γ)  its extend Γ to almost all C(with exeption  of negatives number and 0)  however its is so hard to use
thelimitaboveisthemostgeneraldefinitionpossibleforΓ(analiticcontinuationofΓ)itsextendΓtoalmostallC(withexeptionofnegativesnumberand0)howeveritsissohardtouse
Commented by Filup last updated on 30/Nov/15
I am trying a method of proof now.  If it leads nowhere, i′ll delete my 2nd post
Iamtryingamethodofproofnow.Ifitleadsnowhere,illdeletemy2ndpost
Answered by Filup last updated on 30/Nov/15
Proof with limit  Γ(z)=lim_(n→∞)  ((n!)/(z(z+1)∙∙∙(z+n)))n^z   ∴Γ(z)=lim_(n→∞)  ((n!(z−1)!)/((z+n)!))n^z     Show that Γ(z)=(z−1)Γ(z−1)  ∴lim_(n→∞)  ((n!(z−1)!)/((z+n)!))n^z =(z−1)(lim_(n→∞)  ((n!(z−2)!)/((z+n−1)!))n^(z−1) )  Let us assume Γ(z)=(z−1)Γ(z−1). If this is  true then LHS=RHS    Γ(x)=(x−1)!  lim_(n→∞)  ((n!∙Γ(z))/(Γ(z+n+1)))n^z =(z−1)(lim_(n→∞)  ((n!∙Γ(z−1))/(Γ(z+n)))n^(z−1) )  ∴lim_(n→∞)  ((n!∙Γ(z))/(Γ(z+n+1)))n^z =(z−1)(lim_(n→∞)  ((n!∙((Γ(z))/(z−1)))/((Γ(z+n+1))/(z−1)))n^(z−1) )  ∴lim_(n→∞)  ((n!∙Γ(z))/(Γ(z+n+1)))n^z =(z−1)(lim_(n→∞)  (((n!∙Γ(z)∙(z−1))/((z−1)∙Γ(z+n+1))))n^(z−1) )  ∴lim_(n→∞)  ((n!∙Γ(z))/(Γ(z+n+1)))n^z =lim_(n→∞)  (((z−1)∙n!∙Γ(z))/(Γ(z+n+1)))n^(z−1)   Γ(z+n+1)=(z+n)!  ∴lim_(n→∞)  ((n!∙Γ(z))/((z+n)!))n^z =lim_(n→∞)  ((n!∙Γ(z)^2 )/((z+n)!∙Γ(z−1)))n^(z−1)   ∴lim_(n→∞)  ((n!)/((z+n)!))n^z =lim_(n→∞)  ((n!∙Γ(z))/((z+n)!∙Γ(z−1)))n^(z−1)   ∴lim_(n→∞)  ((n!)/((z+n)!))n^z =lim_(n→∞)  ((n!∙(z−1))/((z+n)!))n^(z−1)   lim_(x→∞)  ((x!)/((x+a)!))=1            (?)  ∴lim_(n→∞)  n^z =lim_(n→∞)  (z−1)n^(z−1)   TRUE  ∴Γ(z+1)=zΓ(z)  please let me know of any errors
ProofwithlimitΓ(z)=limnn!z(z+1)(z+n)nzΓ(z)=limnn!(z1)!(z+n)!nzShowthatΓ(z)=(z1)Γ(z1)limnn!(z1)!(z+n)!nz=(z1)(limnn!(z2)!(z+n1)!nz1)LetusassumeΓ(z)=(z1)Γ(z1).IfthisistruethenLHS=RHSΓ(x)=(x1)!limnn!Γ(z)Γ(z+n+1)nz=(z1)(limnn!Γ(z1)Γ(z+n)nz1)limnn!Γ(z)Γ(z+n+1)nz=(z1)(limnn!Γ(z)z1Γ(z+n+1)z1nz1)limnn!Γ(z)Γ(z+n+1)nz=(z1)(limn(n!Γ(z)(z1)(z1)Γ(z+n+1))nz1)limnn!Γ(z)Γ(z+n+1)nz=limn(z1)n!Γ(z)Γ(z+n+1)nz1Γ(z+n+1)=(z+n)!limnn!Γ(z)(z+n)!nz=limnn!Γ(z)2(z+n)!Γ(z1)nz1limnn!(z+n)!nz=limnn!Γ(z)(z+n)!Γ(z1)nz1limnn!(z+n)!nz=limnn!(z1)(z+n)!nz1limxx!(x+a)!=1(?)limnnz=limn(z1)nz1TRUEΓ(z+1)=zΓ(z)pleaseletmeknowofanyerrors
Commented by 123456 last updated on 30/Nov/15
Γ(z+1)=zΓ(z)  Γ(z)=(z−1)Γ(z−1)
Γ(z+1)=zΓ(z)Γ(z)=(z1)Γ(z1)
Commented by Filup last updated on 30/Nov/15
How should I apply this?
HowshouldIapplythis?
Commented by 123456 last updated on 30/Nov/15
you have a typo in the 5th line
youhaveatypointhe5thline
Commented by Filup last updated on 30/Nov/15
Thanks! I′ll re read everything!  I believe I have fixed everything
Thanks!Illrereadeverything!IbelieveIhavefixedeverything
Commented by 123456 last updated on 30/Nov/15
hint: (x/x)=1,lim_(n→∞) ((n+a)/(n+b))=1  try to write Γ(z) and Γ(z+1)  and compare each other to see what  you need to manipulate :D  ps:if you want i can post the proof for this  part, but try to do it
hint:xx=1,limnn+an+b=1trytowriteΓ(z)andΓ(z+1)andcompareeachothertoseewhatyouneedtomanipulate:Dps:ifyouwanticanposttheproofforthispart,buttrytodoit
Commented by Filup last updated on 30/Nov/15
I′ll let you know if i can′t do it!
Illletyouknowificantdoit!
Commented by Filup last updated on 30/Nov/15
Am I able to remove like terms within  limits? e.g.:  lim_(x→n)  f(x)=lim_(x→n)  g(x)  ⇒lim_(x→n)  ((f(x))/(g(x)))=1
AmIabletoremoveliketermswithinlimits?e.g.:limxnf(x)=limxng(x)limxnf(x)g(x)=1
Commented by Filup last updated on 30/Nov/15
is this correct?
isthiscorrect?
Answered by Yozzi last updated on 30/Nov/15
(i) We are given                     Γ(z)=lim_(n→+∞) ((n!n^z )/(Π_(r=0) ^n (z+r))).   Here I assume z is such that the   function Γ(z) is well defined. A   possible constriction on the domain  for Γ is z>0. Therefore we have  Γ(z+1)=lim_(n→+∞) ((n!n^(z+1) )/((z+1)(z+2)...(z+n)(z+n+1)))  Γ(z+1)=lim_(n→+∞) ((n!n^(z+1) z)/({Π_(r=0) ^n (z+r)}(z+1+n)))  Γ(z+1)=lim_(n→+∞) (((n!n^z )/(Π_(r=0) ^n (z+r))))×((zn)/(z+1+n))  Since lim_(x→+∞) f(x)×g(x)=(lim_(x→+∞) f(x))(lim_(x→+∞) g(x)) in  general, we obtain  Γ(z+1)=Γ(z)×lim_(n→+∞) ((zn)/(z+1+n)).  But, ((zn)/(z+1+n))=(z/((z/n)+(1/n)+1)).  ⇒Γ(z+1)=Γ(z)lim_(n→+∞) (z/((z/n)+(1/n)+1))  Γ(z+1)=Γ(z)×(z/((z/∞)+(1/∞)+1))  Γ(z+1)=Γ(z)×(z/(0+0+1))  Γ(z+1)=zΓ(z).                                          □    Remarks:  (1) If it is required to calculate the   value of Γ(x) for x<0 we use the  recurrence relation Γ(x)=(1/x)Γ(x+1)  until the part Γ(x+1) reduces fully to   some non−negative form.  E.g  Γ(((−5)/2))=((−2)/5)Γ(((−3)/2))=((−2)/5)×((−2)/3)Γ(((−1)/2))  Γ(−(5/2))=(4/(15))×((−2)/1)Γ((1/2))  Since Γ(1/2)=(√π),                             Γ(((−5)/2))=((−8)/(15))(√π).  (2) For 0<x<1 we have   Γ(x)Γ(1−x)=(π/(sinπz)).  So, if x=1/2 we derive the result  Γ(0.5)=(√π).  Γ(0.5)Γ(1−0.5)=(π/(sin0.5π))  (Γ(0.5))^2 =(π/1)⇒Γ(0.5)=±(√π)  However, for x>0 the limit definition  for Γ(x)=lim_(n→+∞) ((n!n^x )/(Π_(r=0) ^n (x+r))) indicates that  Γ(x) is non−negative.  ⇒Γ(0.5)≠−(√π)⇒Γ(0.5)=(√π) .
(i)WearegivenΓ(z)=limn+n!nznr=0(z+r).HereIassumezissuchthatthefunctionΓ(z)iswelldefined.ApossibleconstrictiononthedomainforΓisz>0.ThereforewehaveΓ(z+1)=limn+n!nz+1(z+1)(z+2)(z+n)(z+n+1)Γ(z+1)=limn+n!nz+1z{nr=0(z+r)}(z+1+n)Γ(z+1)=limn+(n!nznr=0(z+r))×znz+1+nSincelimx+f(x)×g(x)=(limx+f(x))(limx+g(x))ingeneral,weobtainΓ(z+1)=Γ(z)×limn+znz+1+n.But,znz+1+n=zzn+1n+1.Γ(z+1)=Γ(z)limn+zzn+1n+1Γ(z+1)=Γ(z)×zz+1+1Γ(z+1)=Γ(z)×z0+0+1Γ(z+1)=zΓ(z).◻Remarks:(1)IfitisrequiredtocalculatethevalueofΓ(x)forx<0weusetherecurrencerelationΓ(x)=1xΓ(x+1)untilthepartΓ(x+1)reducesfullytosomenonnegativeform.E.gΓ(52)=25Γ(32)=25×23Γ(12)Γ(52)=415×21Γ(12)SinceΓ(1/2)=π,Γ(52)=815π.(2)For0<x<1wehaveΓ(x)Γ(1x)=πsinπz.So,ifx=1/2wederivetheresultΓ(0.5)=π.Γ(0.5)Γ(10.5)=πsin0.5π(Γ(0.5))2=π1Γ(0.5)=±πHowever,forx>0thelimitdefinitionforΓ(x)=limn+n!nxnr=0(x+r)indicatesthatΓ(x)isnonnegative.Γ(0.5)πΓ(0.5)=π.
Commented by 123456 last updated on 02/Dec/15
the limit form of Γ function also tell  you that its have simple pole at  z∈{...,−5,−4,−3,−2,−1,0}
thelimitformofΓfunctionalsotellyouthatitshavesimplepoleatz{,5,4,3,2,1,0}

Leave a Reply

Your email address will not be published. Required fields are marked *