Question Number 73774 by mind is power last updated on 15/Nov/19
$$\mathrm{hello}\:,\mathrm{show}\:\mathrm{that} \\ $$$$\underset{\mathrm{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{nsin}\left(\mathrm{n}\right)}{\mathrm{1}+\mathrm{n}^{\mathrm{2}} }=\frac{\pi\mathrm{e}^{\mathrm{1}} −\pi\mathrm{e}^{−\mathrm{1}} }{−\mathrm{2e}^{\pi} +\mathrm{2e}^{−\pi} } \\ $$$$\mathrm{indication}\:,\mathrm{Residus}\:\mathrm{Theorem}\:\mathrm{let} \\ $$$$\mathrm{f}\left(\mathrm{z}\right)=\frac{\mathrm{zsin}\left(\mathrm{z}\right)}{\left(\mathrm{1}+\mathrm{z}^{\mathrm{2}} \right)\mathrm{sin}\left(\pi\mathrm{z}\right)} \\ $$$$\mathrm{have}\:\mathrm{a}\:\mathrm{very}\:\mathrm{nice}\:\mathrm{day}! \\ $$