Menu Close

Hello-Solve-in-pi-pi-2sinx-cosx-sinx-0-result-should-be-in-radian-please-help-me-




Question Number 76477 by mathocean1 last updated on 27/Dec/19
Hello Solve in   ]−π;π[  ((2sinx)/(cosx−sinx))≥0  result should be in radian  please help me ...
HelloSolvein]π;π[2sinxcosxsinx0resultshouldbeinradianpleasehelpme
Answered by Kunal12588 last updated on 27/Dec/19
((2sin x)/(cos x−sin x))=(((√2)sin x)/(sin((π/4)−x)))≥0  ⇒x∈[0,(π/4))∪(−((3π)/4),−π]
2sinxcosxsinx=2sinxsin(π4x)0x[0,π4)(3π4,π]
Commented by mathocean1 last updated on 27/Dec/19
please can you show me how you  have done to have(((√2)sinx)/(sin((π/4)−x)))
pleasecanyoushowmehowyouhavedonetohave2sinxsin(π4x)
Commented by Kunal12588 last updated on 27/Dec/19
cos x − sin x =(√2)(sin(π/4) cos x − cos(π/4) sin x)  =(√2)sin((π/4)−x)  ((2sin x)/( (√2)sin((π/4)−x)))=(((√2)sin x)/(sin((π/4)−x)))
cosxsinx=2(sinπ4cosxcosπ4sinx)=2sin(π4x)2sinx2sin(π4x)=2sinxsin(π4x)
Commented by mathocean1 last updated on 27/Dec/19
thank you sir...  I want to know how have solve the  rest (((√2)sinx)/(sin((π/4)−x)))≥0  because i have  never solved this type of   exercise
thankyousirIwanttoknowhowhavesolvetherest2sinxsin(π4x)0\boldsymbolbecause\boldsymboli\boldsymbolhave\boldsymbolnever\boldsymbolsolved\boldsymbolthis\boldsymboltype\boldsymbolof\boldsymbolexercise
Commented by Kunal12588 last updated on 27/Dec/19
well I have also not solve such type of questions  I just thought of an idea that if numerator  is greater than 0 then denominator should  also be greater than 0 similarly, when N_r <0  then D_r <0.
wellIhavealsonotsolvesuchtypeofquestionsIjustthoughtofanideathatifnumeratorisgreaterthan0thendenominatorshouldalsobegreaterthan0similarly,whenNr<0thenDr<0.
Commented by mathocean1 last updated on 27/Dec/19
thank you once more sir... may God  bless you...  By the way, i wish you a happy  new year!
thankyouoncemoresirmayGodblessyouBytheway,iwishyouahappynewyear!
Answered by MJS last updated on 27/Dec/19
(1) sin x ≥0 ∧ cos x −sin x >0  ∨  (2) sin x ≤0 ∧ cos x −sin x <0    (1) sin x ≥0 ⇔ 0≤x<π         cos x −sin x >0 ⇔ −((3π)/4)<x<(π/4)         ⇒ 0≤x<(π/4)  (2) sin x ≤0 ⇔ −π<x≤0         cos x −sin x <0 ⇔ −π<x<−((3π)/4) ∨ (π/4)<x<π         ⇒ −π<x<−((3π)/4)    ⇒ −π<x<−((3π)/4) ∨ 0≤x<(π/4)
(1)sinx0cosxsinx>0(2)sinx0cosxsinx<0(1)sinx00x<πcosxsinx>03π4<x<π40x<π4(2)sinx0π<x0cosxsinx<0π<x<3π4π4<x<ππ<x<3π4π<x<3π40x<π4
Commented by mr W last updated on 28/Dec/19
x=π is missing.
x=πismissing.x=πismissing.
Commented by MJS last updated on 28/Dec/19
he typed ]−π; π[ ⇔ −π<x<π
hetyped]π;π[π<x<πhetyped]π;π[π<x<π

Leave a Reply

Your email address will not be published. Required fields are marked *