Menu Close

hello-solve-it-in-pi-pi-and-place-solutions-in-trigonometric-circle-cos-6-x-sin-6-x-3-8-3-sin4x-8-3-please-help-me-




Question Number 75976 by mathocean1 last updated on 21/Dec/19
hello  solve it in ]−π;π] and place solutions  in trigonometric circle.  cos^6 x+sin^6 x=(3/8)((√3)sin4x+(8/3))  please help me...
$$\left.\mathrm{h}\left.\mathrm{ello}\:\:\mathrm{solve}\:\mathrm{it}\:\mathrm{in}\:\right]−\pi;\pi\right]\:\mathrm{and}\:\mathrm{place}\:\mathrm{solutions} \\ $$$$\mathrm{in}\:\mathrm{trigonometric}\:\mathrm{circle}. \\ $$$$\mathrm{cos}^{\mathrm{6}} \mathrm{x}+\mathrm{sin}^{\mathrm{6}} \mathrm{x}=\frac{\mathrm{3}}{\mathrm{8}}\left(\sqrt{\mathrm{3}}\mathrm{sin4x}+\frac{\mathrm{8}}{\mathrm{3}}\right) \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}… \\ $$
Commented by MJS last updated on 21/Dec/19
cos^6  x +sin^6  x =       [cos^2  x =1−sin^2  x]  =3sin^4  x −3sin^2  x +1=1+3sin^2  x (sin^2  x −1)=  =1−3sin^2  x (1−sin^2  x)=1−3sin^2  x cos^2  x =  =(5/8)+(3/8)cos 4x    (5/8)+(3/8)cos 4x =1+((3(√3))/8)sin 4x  cos 4x −(√3)sin 4x −1=0  x=(1/2)arctan t ⇔ t=tan 2x  −((2t(t+(√3)))/(t^2 +1))=0  ⇒ t_1 =0∧t_2 =−(√3)  tan 2x =0 ⇒ x=−(π/2)∨x=0∨x=(π/2)∨x=π  tan 2x =−(√3) ⇒ x=−((2π)/3)∨x=−(π/6)∨x=(π/3)∨x=((5π)/6)
$$\mathrm{cos}^{\mathrm{6}} \:{x}\:+\mathrm{sin}^{\mathrm{6}} \:{x}\:= \\ $$$$\:\:\:\:\:\left[\mathrm{cos}^{\mathrm{2}} \:{x}\:=\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:{x}\right] \\ $$$$=\mathrm{3sin}^{\mathrm{4}} \:{x}\:−\mathrm{3sin}^{\mathrm{2}} \:{x}\:+\mathrm{1}=\mathrm{1}+\mathrm{3sin}^{\mathrm{2}} \:{x}\:\left(\mathrm{sin}^{\mathrm{2}} \:{x}\:−\mathrm{1}\right)= \\ $$$$=\mathrm{1}−\mathrm{3sin}^{\mathrm{2}} \:{x}\:\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:{x}\right)=\mathrm{1}−\mathrm{3sin}^{\mathrm{2}} \:{x}\:\mathrm{cos}^{\mathrm{2}} \:{x}\:= \\ $$$$=\frac{\mathrm{5}}{\mathrm{8}}+\frac{\mathrm{3}}{\mathrm{8}}\mathrm{cos}\:\mathrm{4}{x} \\ $$$$ \\ $$$$\frac{\mathrm{5}}{\mathrm{8}}+\frac{\mathrm{3}}{\mathrm{8}}\mathrm{cos}\:\mathrm{4}{x}\:=\mathrm{1}+\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}}\mathrm{sin}\:\mathrm{4}{x} \\ $$$$\mathrm{cos}\:\mathrm{4}{x}\:−\sqrt{\mathrm{3}}\mathrm{sin}\:\mathrm{4}{x}\:−\mathrm{1}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arctan}\:{t}\:\Leftrightarrow\:{t}=\mathrm{tan}\:\mathrm{2}{x} \\ $$$$−\frac{\mathrm{2}{t}\left({t}+\sqrt{\mathrm{3}}\right)}{{t}^{\mathrm{2}} +\mathrm{1}}=\mathrm{0} \\ $$$$\Rightarrow\:{t}_{\mathrm{1}} =\mathrm{0}\wedge{t}_{\mathrm{2}} =−\sqrt{\mathrm{3}} \\ $$$$\mathrm{tan}\:\mathrm{2}{x}\:=\mathrm{0}\:\Rightarrow\:{x}=−\frac{\pi}{\mathrm{2}}\vee{x}=\mathrm{0}\vee{x}=\frac{\pi}{\mathrm{2}}\vee{x}=\pi \\ $$$$\mathrm{tan}\:\mathrm{2}{x}\:=−\sqrt{\mathrm{3}}\:\Rightarrow\:{x}=−\frac{\mathrm{2}\pi}{\mathrm{3}}\vee{x}=−\frac{\pi}{\mathrm{6}}\vee{x}=\frac{\pi}{\mathrm{3}}\vee{x}=\frac{\mathrm{5}\pi}{\mathrm{6}} \\ $$
Commented by mathocean1 last updated on 22/Dec/19
please how have you done to have   the line number 5  (5/8)+(3/8)cos4x
$$\mathrm{please}\:\mathrm{how}\:\mathrm{have}\:\mathrm{you}\:\mathrm{done}\:\mathrm{to}\:\mathrm{have}\: \\ $$$$\mathrm{the}\:\mathrm{line}\:\mathrm{number}\:\mathrm{5} \\ $$$$\frac{\mathrm{5}}{\mathrm{8}}+\frac{\mathrm{3}}{\mathrm{8}}\mathrm{cos4}{x} \\ $$
Commented by MJS last updated on 22/Dec/19
1−3sin^2  x cos^2  x =1−3(sin x cos x)^2 =       [sin x cos x =(1/2)sin 2x  =1−3(((sin 2x)/2))^2 =1−(3/4)sin^2  2x =       [sin^2  x =(1/2)(1−cos 2x)]  =1−(3/4)((1/2)−cos 4x)=(5/8)+(3/8)cos 4x
$$\mathrm{1}−\mathrm{3sin}^{\mathrm{2}} \:{x}\:\mathrm{cos}^{\mathrm{2}} \:{x}\:=\mathrm{1}−\mathrm{3}\left(\mathrm{sin}\:{x}\:{cos}\:{x}\right)^{\mathrm{2}} = \\ $$$$\:\:\:\:\:\left[\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2}{x}\right. \\ $$$$=\mathrm{1}−\mathrm{3}\left(\frac{\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{1}−\frac{\mathrm{3}}{\mathrm{4}}\mathrm{sin}^{\mathrm{2}} \:\mathrm{2}{x}\:= \\ $$$$\:\:\:\:\:\left[\mathrm{sin}^{\mathrm{2}} \:{x}\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{2}{x}\right)\right] \\ $$$$=\mathrm{1}−\frac{\mathrm{3}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{cos}\:\mathrm{4}{x}\right)=\frac{\mathrm{5}}{\mathrm{8}}+\frac{\mathrm{3}}{\mathrm{8}}\mathrm{cos}\:\mathrm{4}{x} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *