Menu Close

hello-solve-it-in-pi-pi-and-place-solutions-in-trigonometric-circle-cos-6-x-sin-6-x-3-8-3-sin4x-8-3-please-help-me-




Question Number 75976 by mathocean1 last updated on 21/Dec/19
hello  solve it in ]−π;π] and place solutions  in trigonometric circle.  cos^6 x+sin^6 x=(3/8)((√3)sin4x+(8/3))  please help me...
hellosolveitin]π;π]andplacesolutionsintrigonometriccircle.cos6x+sin6x=38(3sin4x+83)pleasehelpme
Commented by MJS last updated on 21/Dec/19
cos^6  x +sin^6  x =       [cos^2  x =1−sin^2  x]  =3sin^4  x −3sin^2  x +1=1+3sin^2  x (sin^2  x −1)=  =1−3sin^2  x (1−sin^2  x)=1−3sin^2  x cos^2  x =  =(5/8)+(3/8)cos 4x    (5/8)+(3/8)cos 4x =1+((3(√3))/8)sin 4x  cos 4x −(√3)sin 4x −1=0  x=(1/2)arctan t ⇔ t=tan 2x  −((2t(t+(√3)))/(t^2 +1))=0  ⇒ t_1 =0∧t_2 =−(√3)  tan 2x =0 ⇒ x=−(π/2)∨x=0∨x=(π/2)∨x=π  tan 2x =−(√3) ⇒ x=−((2π)/3)∨x=−(π/6)∨x=(π/3)∨x=((5π)/6)
cos6x+sin6x=[cos2x=1sin2x]=3sin4x3sin2x+1=1+3sin2x(sin2x1)==13sin2x(1sin2x)=13sin2xcos2x==58+38cos4x58+38cos4x=1+338sin4xcos4x3sin4x1=0x=12arctantt=tan2x2t(t+3)t2+1=0t1=0t2=3tan2x=0x=π2x=0x=π2x=πtan2x=3x=2π3x=π6x=π3x=5π6
Commented by mathocean1 last updated on 22/Dec/19
please how have you done to have   the line number 5  (5/8)+(3/8)cos4x
pleasehowhaveyoudonetohavethelinenumber558+38cos4x
Commented by MJS last updated on 22/Dec/19
1−3sin^2  x cos^2  x =1−3(sin x cos x)^2 =       [sin x cos x =(1/2)sin 2x  =1−3(((sin 2x)/2))^2 =1−(3/4)sin^2  2x =       [sin^2  x =(1/2)(1−cos 2x)]  =1−(3/4)((1/2)−cos 4x)=(5/8)+(3/8)cos 4x
13sin2xcos2x=13(sinxcosx)2=[sinxcosx=12sin2x=13(sin2x2)2=134sin22x=[sin2x=12(1cos2x)]=134(12cos4x)=58+38cos4x

Leave a Reply

Your email address will not be published. Required fields are marked *