help-me-lnx-1-x-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 943 by miguel last updated on 04/May/15 helpme..∫lnx1−xdx=??? Commented by 123456 last updated on 04/May/15 0<x<1?u=lnx⇔x=eudu=dxx=dxeu∫lnx1−xdx=?∫ueu1−eudu Answered by prakash jain last updated on 04/May/15 Integratbyparts−2lnx1−x+2∫1−xxdx∫1−xxdx=∫1−xx1−xdx=−∫11−xdx+∫1x1−xdx=−21−x+∫1x1−xdx∫1x1−xdx,put1−x=u2,x=1−u2,dx=−2udu∫−2udu(1−u2)u=−∫2du(1−u2)=−[∫du1−u+∫du1+u]=ln(1−u)−ln(1+u)=ln(1−1−x)−ln(1+1+x) Commented by prakash jain last updated on 04/May/15 lnxisfirstfuncionand11−xisthesecondfunctionforintegratingbyparts. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: e-x-2-dx-Next Next post: lim-x-2-log-x-2-1-log-2-1-x-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.