Menu Close

help-me-lnx-1-x-dx-




Question Number 943 by miguel last updated on 04/May/15
help me..                      ∫((lnx)/( (√(1−x))))dx=???
helpme..lnx1xdx=???
Commented by 123456 last updated on 04/May/15
0<x<1   ?  u=ln x⇔x=e^u   du=(dx/x)=(dx/e^u )  ∫((ln x)/( (√(1−x))))dx=^? ∫((ue^u )/( (√(1−e^u ))))du
0<x<1?u=lnxx=eudu=dxx=dxeulnx1xdx=?ueu1eudu
Answered by prakash jain last updated on 04/May/15
Integrat by parts   −2ln x(√(1−x))+2∫ ((√(1−x))/x) dx  ∫((√(1−x))/x) dx=∫ ((1−x)/(x(√(1−x))))dx  =−∫(1/( (√(1−x)))) dx+∫(1/(x(√(1−x))))dx  =−2(√(1−x))+∫ (1/(x(√(1−x))))dx  ∫ (1/(x(√(1−x))))dx, put 1−x=u^2 , x=1−u^2 , dx=−2udu  ∫ ((−2udu)/((1−u^2 )u))=−∫((2du)/((1−u^2 )))=−[∫(du/(1−u))+∫(du/(1+u))]  =ln (1−u)−ln (1+u)=ln (1−(√(1−x)))−ln (1+(√(1+x)))
Integratbyparts2lnx1x+21xxdx1xxdx=1xx1xdx=11xdx+1x1xdx=21x+1x1xdx1x1xdx,put1x=u2,x=1u2,dx=2udu2udu(1u2)u=2du(1u2)=[du1u+du1+u]=ln(1u)ln(1+u)=ln(11x)ln(1+1+x)
Commented by prakash jain last updated on 04/May/15
ln x is first funcion and (1/( (√(1−x))))  is the second  function for integrating by parts.
lnxisfirstfuncionand11xisthesecondfunctionforintegratingbyparts.

Leave a Reply

Your email address will not be published. Required fields are marked *