Menu Close

Help-me-obtain-the-value-of-e-from-1-1-n-n-how-do-i-go-about-it-




Question Number 67659 by Rio Michael last updated on 29/Aug/19
Help me obtain   the value of  e from   (1 + (1/n))^n   how do i go about it.
$${Help}\:{me}\:{obtain}\:\:\:{the}\:{value}\:{of}\:\:{e}\:{from} \\ $$$$\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{{n}}\right)^{{n}} \:\:{how}\:{do}\:{i}\:{go}\:{about}\:{it}. \\ $$
Commented by Abdo msup. last updated on 30/Aug/19
A_n  =(1+(1/n))^n   and lim_(n→+∞)    A_n =e  A_n =Σ_(k=0) ^n  C_n ^k  (1/n^k ) =(C_n ^0 /n^0 ) +(C_n ^1 /n^1 ) +(C_n ^2 /n^2 ) +(C_n ^3 /n^3 ) +..+(C_n ^n /n^n ) ⇒  e =lim_(n→+∞)    A_n =1 +1 +(C_n ^2 /n^2 ) +(C_n ^3 /n^3 ) +....  =2 +((n(n−1))/(2n^2 )) +((n(n−1)(n−2))/(6n^3 )) +...  wd find e ∼ 2,7...
$${A}_{{n}} \:=\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}} \:\:{and}\:{lim}_{{n}\rightarrow+\infty} \:\:\:{A}_{{n}} ={e} \\ $$$${A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\frac{\mathrm{1}}{{n}^{{k}} }\:=\frac{{C}_{{n}} ^{\mathrm{0}} }{{n}^{\mathrm{0}} }\:+\frac{{C}_{{n}} ^{\mathrm{1}} }{{n}^{\mathrm{1}} }\:+\frac{{C}_{{n}} ^{\mathrm{2}} }{{n}^{\mathrm{2}} }\:+\frac{{C}_{{n}} ^{\mathrm{3}} }{{n}^{\mathrm{3}} }\:+..+\frac{{C}_{{n}} ^{{n}} }{{n}^{{n}} }\:\Rightarrow \\ $$$${e}\:={lim}_{{n}\rightarrow+\infty} \:\:\:{A}_{{n}} =\mathrm{1}\:+\mathrm{1}\:+\frac{{C}_{{n}} ^{\mathrm{2}} }{{n}^{\mathrm{2}} }\:+\frac{{C}_{{n}} ^{\mathrm{3}} }{{n}^{\mathrm{3}} }\:+…. \\ $$$$=\mathrm{2}\:+\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}{n}^{\mathrm{2}} }\:+\frac{{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)}{\mathrm{6}{n}^{\mathrm{3}} }\:+… \\ $$$${wd}\:{find}\:{e}\:\sim\:\mathrm{2},\mathrm{7}… \\ $$
Commented by Rio Michael last updated on 30/Aug/19
thanks sir
$${thanks}\:{sir} \\ $$
Commented by Abdo msup. last updated on 30/Aug/19
you are welcome.
$${you}\:{are}\:{welcome}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *