Menu Close

hi-calculate-A-x-2-y-2-dxdy-with-A-x-2-a-2-y-2-b-2-1-




Question Number 138257 by greg_ed last updated on 11/Apr/21
hi !  calculate :   ∫∫_A (x^2 −y^2 )dxdy with A={(x^2 /a^2 ) + (y^2 /b^2 ) ≤ 1}
\boldsymbolhi!\boldsymbolcalculate:A(x2y2)dxdywithA={x2a2+y2b21}
Answered by mathmax by abdo last updated on 11/Apr/21
we consider the diffeomorphism   { ((x=arcosθ)),((y=brsinθ)) :}  (x^2 /a^2 )+(y^2 /b^2 ) =r^2 (cos^2 θ+sin^2 θ)=r^2 ≤1 ⇒o≤r≤1  ∫∫  (x^2 −y^2 )dxdy =∫_(0≤r<1)   ∫_0 ^(2π) (a^2 r^2 cos^2 θ−b^2 r^2 sin^2 θ)abrdrdθ  =ab ∫_0 ^1 r^3  dr∫_0 ^(2π) (a^2 cos^2 θ−b^2 sin^2 θ)dθ  but  ∫_0 ^1  r^3 dr=[(r^4 /4)]_0 ^1 =(1/4)  ∫_0 ^(2π) (a^2 cos^2 θ−b^2 sin^2 θ)dθ =(a^2 /2)∫_0 ^(2π) (1+cos(2θ))dθ  −(b^2 /2)∫_0 ^(2π) (1−cos(2θ))dθ =πa^2  +(a^2 /4)[sin(2θ)]_0 ^(2π)   −πb^2  +(b^2 /2)[sin(2θ)]_0 ^(2π)  =πa^2 +0−πb^2  +0 =π(a^2 −b^2 ) ⇒  ∫∫_A (x^2 −y^2 )dxdy =((ab)/4).π(a^2 −b^2 )=(π/4)(a^3 b−ab^3 )
weconsiderthediffeomorphism{x=arcosθy=brsinθx2a2+y2b2=r2(cos2θ+sin2θ)=r21or1(x2y2)dxdy=0r<102π(a2r2cos2θb2r2sin2θ)abrdrdθ=ab01r3dr02π(a2cos2θb2sin2θ)dθbut01r3dr=[r44]01=1402π(a2cos2θb2sin2θ)dθ=a2202π(1+cos(2θ))dθb2202π(1cos(2θ))dθ=πa2+a24[sin(2θ)]02ππb2+b22[sin(2θ)]02π=πa2+0πb2+0=π(a2b2)A(x2y2)dxdy=ab4.π(a2b2)=π4(a3bab3)
Commented by greg_ed last updated on 11/Apr/21
thank you very much, dear friend mathmax by abdo !
thankyouverymuch,dearfriendmathmaxbyabdo!\boldsymbolthank\boldsymbolyou\boldsymbolvery\boldsymbolmuch,\boldsymboldear\boldsymbolfriend\boldsymbolmathmax\boldsymbolby\boldsymbolabdo!
Commented by mathmax by abdo last updated on 12/Apr/21
you are welcome sir
youarewelcomesiryouarewelcomesir

Leave a Reply

Your email address will not be published. Required fields are marked *