hi-calculate-A-x-2-y-2-dxdy-with-A-x-2-a-2-y-2-b-2-1- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 138257 by greg_ed last updated on 11/Apr/21 \boldsymbolhi!\boldsymbolcalculate:∫∫A(x2−y2)dxdywithA={x2a2+y2b2⩽1} Answered by mathmax by abdo last updated on 11/Apr/21 weconsiderthediffeomorphism{x=arcosθy=brsinθx2a2+y2b2=r2(cos2θ+sin2θ)=r2⩽1⇒o⩽r⩽1∫∫(x2−y2)dxdy=∫0⩽r<1∫02π(a2r2cos2θ−b2r2sin2θ)abrdrdθ=ab∫01r3dr∫02π(a2cos2θ−b2sin2θ)dθbut∫01r3dr=[r44]01=14∫02π(a2cos2θ−b2sin2θ)dθ=a22∫02π(1+cos(2θ))dθ−b22∫02π(1−cos(2θ))dθ=πa2+a24[sin(2θ)]02π−πb2+b22[sin(2θ)]02π=πa2+0−πb2+0=π(a2−b2)⇒∫∫A(x2−y2)dxdy=ab4.π(a2−b2)=π4(a3b−ab3) Commented by greg_ed last updated on 11/Apr/21 thankyouverymuch,dearfriendmathmaxbyabdo!\boldsymbolthank\boldsymbolyou\boldsymbolvery\boldsymbolmuch,\boldsymboldear\boldsymbolfriend\boldsymbolmathmax\boldsymbolby\boldsymbolabdo! Commented by mathmax by abdo last updated on 12/Apr/21 youarewelcomesiryouarewelcomesir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Prove-that-4sin-2-36-1-2-cos72-Next Next post: Question-72724 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.