Menu Close

hi-calculate-lim-x-ln-x-1-ln-x-x-ln-x-




Question Number 138473 by henderson last updated on 14/Apr/21
hi !  calculate : lim_(x→∞)  [((ln(x+1))/(ln (x)))]^(x ln (x)) .
hi!calculate:limx[ln(x+1)ln(x)]xln(x).
Answered by mathmax by abdo last updated on 14/Apr/21
let f(x)=(((ln(x+1))/(lnx)))^(xln(x))  ⇒f(x)=e^(xln(x)ln(((ln(x+1))/(lnx))))   and ln(((ln(x+1))/(lnx)))=ln(((lnx+ln(1+(1/x)))/(lnx)))=ln(1+((ln(1+(1/x)))/(lnx)))  ∼ln(1+(1/(xlnx)))∼(1/(xlnx)) ⇒xlnxln(((ln(x+1))/(ln)))∼ 1 ⇒lim_(x→+∞) f(x)=e
letf(x)=(ln(x+1)lnx)xln(x)f(x)=exln(x)ln(ln(x+1)lnx)andln(ln(x+1)lnx)=ln(lnx+ln(1+1x)lnx)=ln(1+ln(1+1x)lnx)ln(1+1xlnx)1xlnxxlnxln(ln(x+1)ln)1limx+f(x)=e

Leave a Reply

Your email address will not be published. Required fields are marked *