Menu Close

hi-for-a-0-1-and-n-1-a-n-1-n-k-0-n-1-a-k-n-k-prove-that-n-0-we-get-0-a-n-1-




Question Number 138383 by henderson last updated on 12/Apr/21
hi !  for a_0  = 1 and ∀ n ≥ 1, a_n  = (1/n) Σ_(k=0) ^(n−1)   (a_k /(n−k)) .  prove that ∀ n ≥ 0, we get 0 ≤ a_n  ≤ 1.
hi!fora0=1andn1,an=1nn1k=0aknk.provethatn0,weget0an1.
Commented by mitica last updated on 13/Apr/21
inductie  0≤a_n ≤1⇒0≤a_(n+1) ≤1  a_(n+1) =(1/(n+1))Σ_(k=0) ^n (a_k /(n+1−k))≥0  ∣a_(n+1) ∣=(1/(n+1))∣Σ_(k=0) ^n (a_k /(n+1−k))∣≤(1/(n+1))Σ_(k=0) ^n ((∣a_k ∣)/(n+1−k))≤  (1/(n+1))Σ_(k=0) ^n (1/(n+1−k))≤(1/(n+1))∙(n+1)=1
inductie0an10an+11an+1=1n+1nk=0akn+1k0an+1∣=1n+1nk=0akn+1k∣⩽1n+1nk=0akn+1k1n+1nk=01n+1k1n+1(n+1)=1
Commented by henderson last updated on 13/Apr/21
thank u, sir mitica !
thanku,sirmitica!

Leave a Reply

Your email address will not be published. Required fields are marked *