Menu Close

How-can-I-calculate-the-volume-of-a-region-bounded-by-y-x-2-3-x-1-and-x-2-rotating-about-the-y-7-using-the-shell-method-




Question Number 131364 by EDWIN88 last updated on 04/Feb/21
  How can I calculate the volume   of a region bounded by y=x^2 +3 ;x=1  and x=2 rotating about the y=7 using  the shell method.
HowcanIcalculatethevolumeofaregionboundedbyy=x2+3;x=1andx=2rotatingaboutthey=7usingtheshellmethod.
Answered by bramlexs22 last updated on 04/Feb/21
 V= 2π∫_4 ^7  (7−y)((√(y−3))−2) dy    let (√(y−3)) = q → determinant (((y=7→q=2)),((y=4→q=1)))and dy=2q dq  V=2π∫_1 ^2 (7−(q^2 +3))(q−2)(2q dq)  V=4π∫_1 ^2 (4−q^2 )(q^2 −2q)dq  V=4π∫_1 ^2 (−8q+4q^2 +2q^3 −q^4 )dq  V=4π [−4q^2 +((4q^3 )/3)+(q^4 /2)−(q^5 /5) ]_1 ^2   V=4π [ −4(3)+((4(7))/3)+((15)/2)−((31)/5) ]  V=4π [ ((−180+420−93)/(15))+((15)/2) ]=4π [ ((147)/(15))+((15)/2)]  V=4π [ ((298+225)/(30)) ]= ((1046π)/(15))
V=2π74(7y)(y32)dylety3=qy=7q=2y=4q=1anddy=2qdqV=2π21(7(q2+3))(q2)(2qdq)V=4π21(4q2)(q22q)dqV=4π21(8q+4q2+2q3q4)dqV=4π[4q2+4q33+q42q55]12V=4π[4(3)+4(7)3+152315]V=4π[180+4209315+152]=4π[14715+152]V=4π[298+22530]=1046π15