How-can-I-solve-the-differential-equation-1-x-2-2y-2x-1-x-2-y-4y-0- Tinku Tara June 3, 2023 Differential Equation 0 Comments FacebookTweetPin Question Number 135061 by liberty last updated on 09/Mar/21 How can I solve the differential equation (1+x^2)^2y′′+2x(1+x^2)y′+4y=0 Answered by EDWIN88 last updated on 10/Mar/21 letu=arctanx⇒dydx=dydu.dudx=11+x2.dyduthend2ydx2=−2x(1+x2)2dydu+11+x2.11+x2d2ydu2substutingtooriginalDE(1+x2)2[−2x(1+x2)2dydu+1(1+x2)2d2ydu2]+2x(1+x2)[11+x2dydu]+4y=0⇔−2xdydx+d2ydu2+2xdydu+4y=0⇔d2ydu2+4y=0thecharacteristicequationλ2+4=0hasrootsλ=±2iGeneralsolutiony=C1cos2u+C2sin2uy=C1cos(2arctanx)+C2sin(2arctanx) Commented by liberty last updated on 10/Mar/21 nice Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Let-f-0-a-f-3-0-and-f-x-e-x-4-what-is-the-value-0-3-x-2-f-x-dx-Next Next post: Are-there-more-Trancendental-or-Non-Trancendental-numbers-NOTE-Trancendentals-are-numbers-that-cannot-be-written-algerbraically-e-g-x-2-2-2-is-non-trancendental-pi-is-transendental- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.