Menu Close

How-can-I-solve-the-differential-equation-1-x-2-2y-2x-1-x-2-y-4y-0-




Question Number 135061 by liberty last updated on 09/Mar/21
  How can I solve the differential equation (1+x^2)^2y′′+2x(1+x^2)y′+4y=0
How can I solve the differential equation (1+x^2)^2y′′+2x(1+x^2)y′+4y=0
Answered by EDWIN88 last updated on 10/Mar/21
let u = arctan x ⇒(dy/dx) = (dy/du). (du/dx) = (1/(1+x^2 )). (dy/du)  then (d^2 y/dx^2 ) = −((2x)/((1+x^2 )^2 )) (dy/du) + (1/(1+x^2 )) . (1/(1+x^2 )) (d^2 y/du^2 )  substuting to original DE  (1+x^2 )^2 [ ((−2x)/((1+x^2 )^2 )) (dy/du) + (1/((1+x^2 )^2 )) (d^2 y/du^2 ) ]+2x(1+x^2 )[ (1/(1+x^2 )) (dy/du) ]+4y = 0  ⇔ −2x (dy/dx) + (d^2 y/du^2 ) + 2x (dy/du) + 4y = 0  ⇔ (d^2 y/du^2 ) + 4y = 0   the characteristic equation λ^2 +4 = 0  has roots λ = ± 2i   General solution   y= C_1 cos 2u + C_2  sin 2u   y= C_1  cos (2arctan x) + C_2  sin (2arctan x)
letu=arctanxdydx=dydu.dudx=11+x2.dyduthend2ydx2=2x(1+x2)2dydu+11+x2.11+x2d2ydu2substutingtooriginalDE(1+x2)2[2x(1+x2)2dydu+1(1+x2)2d2ydu2]+2x(1+x2)[11+x2dydu]+4y=02xdydx+d2ydu2+2xdydu+4y=0d2ydu2+4y=0thecharacteristicequationλ2+4=0hasrootsλ=±2iGeneralsolutiony=C1cos2u+C2sin2uy=C1cos(2arctanx)+C2sin(2arctanx)
Commented by liberty last updated on 10/Mar/21
nice
nice

Leave a Reply

Your email address will not be published. Required fields are marked *