Menu Close

How-do-I-use-the-Lagrange-multiplier-method-to-find-the-maximum-of-the-function-f-x-y-4-2x-2y-on-the-curve-x-2-y-2-4-




Question Number 137741 by bemath last updated on 06/Apr/21
  How do I use the Lagrange multiplier method to find the maximum of the function f(x,y)=4-2x-2y on the curve x^2+y^2=4?
How do I use the Lagrange multiplier method to find the maximum of the function f(x,y)=4-2x-2y on the curve x^2+y^2=4?
Answered by TheSupreme last updated on 06/Apr/21
you can find abs max and min, searching relative max and mkn[of  g(x,y,λ)=4−2x−2y+λ(x^2 +y^2 −4)  so   grad g(x,y,λ)= { ((−2+2λx=0)),((−2+2λy=0)),((x^2 +y^2 −4=0)) :}   { ((x=(1/λ))),((y=(1/λ))),(((2/λ^2 )=4)) :}  (x,y,λ)=((√2),(√2),((√2)/2))  (x,y,λ)=(−(√2),−(√2),−((√2)/2))
youcanfindabsmaxandmin,searchingrelativemaxandmkn[ofg(x,y,λ)=42x2y+λ(x2+y24)sogradg(x,y,λ)={2+2λx=02+2λy=0x2+y24=0{x=1λy=1λ2λ2=4(x,y,λ)=(2,2,22)(x,y,λ)=(2,2,22)
Answered by mr W last updated on 06/Apr/21
x^2 +y^2 =2^2   ⇒x=2 cos θ, y=2 sin θ  f(x,y)=4−2(x+y)=4−4(cos θ+sin θ)               =4−4(√2) sin (θ+(π/4))  max=4+4(√2)=4(1+(√2))  min=4−4(√2)=4(1−(√2))
x2+y2=22x=2cosθ,y=2sinθf(x,y)=42(x+y)=44(cosθ+sinθ)=442sin(θ+π4)max=4+42=4(1+2)min=442=4(12)

Leave a Reply

Your email address will not be published. Required fields are marked *