Menu Close

how-do-we-caculate-ln-tanx-dx-




Question Number 133734 by Abdoulaye last updated on 23/Feb/21
how do we caculate ∫ln(tanx)dx ?
howdowecaculateln(tanx)dx?
Answered by mathmax by abdo last updated on 24/Feb/21
f(x)=∫_(π/4) ^x ln(tanx)dx ⇒f(x)=_(tanx=t)    ∫_1 ^(tanx) ((ln(t))/(1+t^2 ))dt  =[arctan(t)ln(t)]_1 ^(tanx) −∫_1 ^(tanx) ((arctant)/t)dt  =xln(tanx)−∫_1 ^(tanx)  ((arctan(t))/t)dt we have (arctant)^((1)) =(1/(1+t^2 ))  =Σ_(n=0) ^∞  (−1)^n t^(2n)  ⇒arctan(t)=Σ_(n=0) ^∞ (((−1)^n )/(2n+1))t^(2n+1) +c(c=0) ⇒  ((arctant)/t)=Σ_(n=0) ^∞  (((−1)^n )/(2n+1))t^(2n)  ⇒f(x)=xln(x)−∫_1 ^(tanx) Σ_(n=0) ^∞  (((−1)^n )/(2n+1))t^(2n) dt  =Σ_(n=0) ^∞  (((−1)^n )/(2n+1))[(1/(2n+1))t^(2n+1) ]_1 ^(tanx)   =Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^2 ))(tan^(2n+1) x−1)  =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 ))tan^(2n+1) x−K  (katalan constant)....be continued...
f(x)=π4xln(tanx)dxf(x)=tanx=t1tanxln(t)1+t2dt=[arctan(t)ln(t)]1tanx1tanxarctanttdt=xln(tanx)1tanxarctan(t)tdtwehave(arctant)(1)=11+t2=n=0(1)nt2narctan(t)=n=0(1)n2n+1t2n+1+c(c=0)arctantt=n=0(1)n2n+1t2nf(x)=xln(x)1tanxn=0(1)n2n+1t2ndt=n=0(1)n2n+1[12n+1t2n+1]1tanx=n=0(1)n(2n+1)2(tan2n+1x1)=n=0(1)n(2n+1)2tan2n+1xK(katalanconstant).becontinued
Commented by Abdoulaye last updated on 24/Feb/21
thank  please what  katalan canstant?
thankpleasewhatkatalancanstant?
Commented by Dwaipayan Shikari last updated on 24/Feb/21
Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^2 ))=1−(1/3^2 )+(1/5^2 )−(1/7^2 )+....=G   (Catalan′s constant)
n=0(1)n(2n+1)2=1132+152172+.=G(Catalansconstant)

Leave a Reply

Your email address will not be published. Required fields are marked *