Question Number 134200 by Abdoulaye last updated on 28/Feb/21
$${how}\:{do}\:{we}\:{calculate} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{k}\mathrm{2}^{{k}} =? \\ $$
Answered by mr W last updated on 01/Mar/21
$${S}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{k}\mathrm{2}^{{k}} \\ $$$$\mathrm{2}{S}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left({k}+\mathrm{1}−\mathrm{1}\right)\mathrm{2}^{{k}+\mathrm{1}} \\ $$$$\mathrm{2}{S}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left({k}+\mathrm{1}\right)\mathrm{2}^{{k}+\mathrm{1}} −\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\mathrm{2}^{{k}+\mathrm{1}} \\ $$$$\mathrm{2}{S}=\underset{{k}=\mathrm{0}} {\overset{{n}+\mathrm{1}} {\sum}}{k}\mathrm{2}^{{k}} −\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\mathrm{2}^{{k}+\mathrm{1}} \\ $$$$\mathrm{2}{S}=\left({n}+\mathrm{1}\right)\mathrm{2}^{{n}+\mathrm{1}} +{S}−\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\mathrm{2}^{{k}+\mathrm{1}} \\ $$$${S}=\left({n}+\mathrm{1}\right)\mathrm{2}^{{n}+\mathrm{1}} −\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\mathrm{2}^{{k}+\mathrm{1}} \\ $$$${S}=\left({n}+\mathrm{1}\right)\mathrm{2}^{{n}+\mathrm{1}} −\frac{\mathrm{2}\left(\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1}\right)}{\mathrm{2}−\mathrm{1}} \\ $$$$\Rightarrow{S}=\left({n}−\mathrm{1}\right)\mathrm{2}^{{n}+\mathrm{1}} +\mathrm{2} \\ $$$$ \\ $$$${generally}: \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{kp}^{{k}} =\frac{\mathrm{1}}{{p}−\mathrm{1}}\left({n}−\frac{\mathrm{1}}{{p}−\mathrm{1}}\right){p}^{{n}+\mathrm{1}} +\frac{{p}}{\left({p}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${with}\:{p}\neq\mathrm{1} \\ $$
Commented by Abdoulaye last updated on 01/Mar/21
$${thank}\:{you}\:{sir} \\ $$
Answered by Ñï= last updated on 01/Mar/21
$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{k}\mathrm{2}^{{k}} \\ $$$$=\left[{xD}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{x}^{{k}} \right]_{{x}=\mathrm{2}} \\ $$$$={xD}\left[\frac{{x}^{{n}+\mathrm{1}} −\mathrm{1}}{{x}−\mathrm{1}}\right]_{{x}=\mathrm{2}} \\ $$$$=\frac{{nx}^{{n}+\mathrm{2}} −\left({n}+\mathrm{1}\right){x}^{{n}+\mathrm{1}} +{x}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\mid_{{x}=\mathrm{2}} \\ $$$$={n}\mathrm{2}^{{n}+\mathrm{2}} −\left({n}+\mathrm{1}\right)\mathrm{2}^{{n}+\mathrm{1}} +\mathrm{2} \\ $$$$=\left({n}−\mathrm{1}\right)\mathrm{2}^{{n}+\mathrm{1}} +\mathrm{2} \\ $$