Menu Close

how-do-we-calculate-k-0-n-k2-k-




Question Number 134200 by Abdoulaye last updated on 28/Feb/21
how do we calculate  Σ_(k=0) ^n k2^k =?
howdowecalculatenk=0k2k=?
Answered by mr W last updated on 01/Mar/21
S=Σ_(k=0) ^n k2^k   2S=Σ_(k=0) ^n (k+1−1)2^(k+1)   2S=Σ_(k=0) ^n (k+1)2^(k+1) −Σ_(k=0) ^n 2^(k+1)   2S=Σ_(k=0) ^(n+1) k2^k −Σ_(k=0) ^n 2^(k+1)   2S=(n+1)2^(n+1) +S−Σ_(k=0) ^n 2^(k+1)   S=(n+1)2^(n+1) −Σ_(k=0) ^n 2^(k+1)   S=(n+1)2^(n+1) −((2(2^(n+1) −1))/(2−1))  ⇒S=(n−1)2^(n+1) +2    generally:  Σ_(k=0) ^n kp^k =(1/(p−1))(n−(1/(p−1)))p^(n+1) +(p/((p−1)^2 ))  with p≠1
S=nk=0k2k2S=nk=0(k+11)2k+12S=nk=0(k+1)2k+1nk=02k+12S=n+1k=0k2knk=02k+12S=(n+1)2n+1+Snk=02k+1S=(n+1)2n+1nk=02k+1S=(n+1)2n+12(2n+11)21S=(n1)2n+1+2generally:nk=0kpk=1p1(n1p1)pn+1+p(p1)2withp1
Commented by Abdoulaye last updated on 01/Mar/21
thank you sir
thankyousir
Answered by Ñï= last updated on 01/Mar/21
Σ_(k=0) ^n k2^k   =[xDΣ_(k=0) ^n x^k ]_(x=2)   =xD[((x^(n+1) −1)/(x−1))]_(x=2)   =((nx^(n+2) −(n+1)x^(n+1) +x)/((x−1)^2 ))∣_(x=2)   =n2^(n+2) −(n+1)2^(n+1) +2  =(n−1)2^(n+1) +2
nk=0k2k=[xDnk=0xk]x=2=xD[xn+11x1]x=2=nxn+2(n+1)xn+1+x(x1)2x=2=n2n+2(n+1)2n+1+2=(n1)2n+1+2

Leave a Reply

Your email address will not be published. Required fields are marked *