Menu Close

How-do-you-find-a-point-on-the-curve-y-x-2-that-is-closest-to-the-point-16-1-2-




Question Number 139255 by bobhans last updated on 25/Apr/21
  How do you find a point on the curve y = x^2 that is closest to the point? (16, 1/2)
$$ \\ $$How do you find a point on the curve y = x^2 that is closest to the point? (16, 1/2)
Answered by john_santu last updated on 25/Apr/21
The tangent to parabola at its point  (r,r^2 ) has equation y=2rx−r^2   The normal for r≠0 will have  gradient m=−(1/(2r)) and it will have  equation y=−(x/(2r))+r^2 +(1/2)  such a line must passes through  at point (16,(1/2)) we get   (1/2)=−((16)/(2r))+r^2 +(1/2) that simplifies  to r^3 = 8 so r=2 and the point  of minimum distance is (2,4)
$${The}\:{tangent}\:{to}\:{parabola}\:{at}\:{its}\:{point} \\ $$$$\left({r},{r}^{\mathrm{2}} \right)\:{has}\:{equation}\:{y}=\mathrm{2}{rx}−{r}^{\mathrm{2}} \\ $$$${The}\:{normal}\:{for}\:{r}\neq\mathrm{0}\:{will}\:{have} \\ $$$${gradient}\:{m}=−\frac{\mathrm{1}}{\mathrm{2}{r}}\:{and}\:{it}\:{will}\:{have} \\ $$$${equation}\:{y}=−\frac{{x}}{\mathrm{2}{r}}+{r}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${such}\:{a}\:{line}\:{must}\:{passes}\:{through} \\ $$$${at}\:{point}\:\left(\mathrm{16},\frac{\mathrm{1}}{\mathrm{2}}\right)\:{we}\:{get}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}=−\frac{\mathrm{16}}{\mathrm{2}{r}}+{r}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\:{that}\:{simplifies} \\ $$$${to}\:{r}^{\mathrm{3}} =\:\mathrm{8}\:{so}\:{r}=\mathrm{2}\:{and}\:{the}\:{point} \\ $$$${of}\:{minimum}\:{distance}\:{is}\:\left(\mathrm{2},\mathrm{4}\right) \\ $$
Answered by mr W last updated on 25/Apr/21
distance from point (16,(1/2)) to point  (x,y) on the curve y=x^2  is d.  D=d^2 =(x−16)^2 +(y−(1/2))^2   D=(x−16)^2 +(x^2 −(1/2))^2   (dD/dx)=2(x−16)+2(x^2 −(1/2))(2x)=0  x^3 =8  x=2  y=2^2 =4  ⇒point (2,4) is closest to (16,(1/2)).
$${distance}\:{from}\:{point}\:\left(\mathrm{16},\frac{\mathrm{1}}{\mathrm{2}}\right)\:{to}\:{point} \\ $$$$\left({x},{y}\right)\:{on}\:{the}\:{curve}\:{y}={x}^{\mathrm{2}} \:{is}\:{d}. \\ $$$${D}={d}^{\mathrm{2}} =\left({x}−\mathrm{16}\right)^{\mathrm{2}} +\left({y}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${D}=\left({x}−\mathrm{16}\right)^{\mathrm{2}} +\left({x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\frac{{dD}}{{dx}}=\mathrm{2}\left({x}−\mathrm{16}\right)+\mathrm{2}\left({x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\mathrm{2}{x}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{3}} =\mathrm{8} \\ $$$${x}=\mathrm{2} \\ $$$${y}=\mathrm{2}^{\mathrm{2}} =\mathrm{4} \\ $$$$\Rightarrow{point}\:\left(\mathrm{2},\mathrm{4}\right)\:{is}\:{closest}\:{to}\:\left(\mathrm{16},\frac{\mathrm{1}}{\mathrm{2}}\right). \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *