Menu Close

How-do-you-find-the-1-Focal-point-2-Directrix-for-y-ax-2-bx-c-For-simplicity-lets-assume-it-goes-throigh-point-0-0-




Question Number 5113 by FilupSmith last updated on 14/Apr/16
How do you find the:  (1)  Focal point  (2)  Directrix  for y=ax^2 +bx+c    For simplicity, lets assume it goes throigh  point (0, 0).
Howdoyoufindthe:(1)Focalpoint(2)Directrixfory=ax2+bx+cForsimplicity,letsassumeitgoesthroighpoint(0,0).
Answered by Yozzii last updated on 14/Apr/16
For a parabola of the form 4py=x^2 ,   its focus is F(0,p) and its directrix is  given by y=−p.   We can rewrite y=ax^2 +bx+c as  y=a(x+(b/(2a)))^2 +c−(b^2 /(4a))  or (1/a)(y+(b^2 /(4a))−c)=(x+(b/(2a)))^2 .  Let J=y+(b^2 /(4a))−c, N=x+(b/(2a)).  (1/a)J=N^2 . J and N represent the   coordinate system (N,J).   ⇒4p=(1/a)⇒p=(1/(4a)). So, in (N,J) coordinates  F(0,(1/(4a))) and directrix J=−(1/(4a)). Since N=x+(b/(2a))  and J=y+(b^2 /(4a))−c we can convert back  to xy−coordinates giving   F(−(b/(2a)),((1−b^2 )/(4a))+c) and directrix y=c−((1+b^2 )/(4a)).
Foraparabolaoftheform4py=x2,itsfocusisF(0,p)anditsdirectrixisgivenbyy=p.Wecanrewritey=ax2+bx+casy=a(x+b2a)2+cb24aor1a(y+b24ac)=(x+b2a)2.LetJ=y+b24ac,N=x+b2a.1aJ=N2.JandNrepresentthecoordinatesystem(N,J).4p=1ap=14a.So,in(N,J)coordinatesF(0,14a)anddirectrixJ=14a.SinceN=x+b2aandJ=y+b24acwecanconvertbacktoxycoordinatesgivingF(b2a,1b24a+c)anddirectrixy=c1+b24a.

Leave a Reply

Your email address will not be published. Required fields are marked *