Menu Close

How-do-you-solve-for-2cos-3-x-sinx-3sin-2-x-cos-x-0-




Question Number 135974 by liberty last updated on 17/Mar/21
  How do you solve for 2cos^3(x) + sinx - 3sin^2 (x) cos(x) =0?
How do you solve for 2cos^3(x) + sinx – 3sin^2 (x) cos(x) =0?
Commented by mr W last updated on 17/Mar/21
2 cos^3  x+sin x−3 sin^2  x cos x=0  2 cos^3  x+sin x−3(1−cos^2  x) cos x=0  5 cos^3  x+sin x−3 cos x=0  cos x (5 cos^2  x−3)+sin x=0  3−(5/(tan^2  x+1))=tan x  3−(5/(t^2 +1))=t  t^3 −3t^2 +t+2=0  (t−2)(t^2 −t−1)=0  ⇒t=tan x=2 ⇒x=nπ+tan^(−1) 2  ⇒t=tan x=((1±(√5))/2) ⇒x=nπ+tan^(−1) ((1±(√5))/2)
2cos3x+sinx3sin2xcosx=02cos3x+sinx3(1cos2x)cosx=05cos3x+sinx3cosx=0cosx(5cos2x3)+sinx=035tan2x+1=tanx35t2+1=tt33t2+t+2=0(t2)(t2t1)=0t=tanx=2x=nπ+tan12t=tanx=1±52x=nπ+tan11±52
Commented by liberty last updated on 17/Mar/21
replacing sin x=sin^3 x+sin x cos^2 x  (•) 2cos^3 x+sin^3 x+sin xcos^2 x−3sin^2 x cos x = 0  divided by cos^3 x  2+tan^3 x+tan x−3tan^2 x = 0   ⇒tan^3 x−3tan^2 x+tan x+2 = 0  let tan x = u  ⇒u^3 −3u^2 +u+2 = 0  (u−2)(u^2 −u−1)=0  → { ((u=2⇒tan x=2)),((u = ((1±(√5))/2)⇒tan x=((1±(√5))/2))) :}
replacingsinx=sin3x+sinxcos2x()2cos3x+sin3x+sinxcos2x3sin2xcosx=0dividedbycos3x2+tan3x+tanx3tan2x=0tan3x3tan2x+tanx+2=0lettanx=uu33u2+u+2=0(u2)(u2u1)=0{u=2tanx=2u=1±52tanx=1±52
Answered by MJS_new last updated on 17/Mar/21
let t=tan (x/2)  −((2(t^2 +t−1)(t^4 −2t^3 −6t^3 +2g+1))/((t^2 +1)^3 ))=0  (t^2 +t−1)(t^2 −(1+(√5))t−1)(t^2 −(1−(√5))t−1)=0  solve this for t and then x=2πn+2arctan t
lett=tanx22(t2+t1)(t42t36t3+2g+1)(t2+1)3=0(t2+t1)(t2(1+5)t1)(t2(15)t1)=0solvethisfortandthenx=2πn+2arctant

Leave a Reply

Your email address will not be published. Required fields are marked *