Menu Close

How-do-you-solve-the-following-series-i-0-1-i-1-2-i-1-




Question Number 2181 by Filup last updated on 07/Nov/15
How do you solve the following series?  Σ_(i=0) ^∞ (−1)^i (1/(2(i+1)))
$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{following}\:\mathrm{series}? \\ $$$$\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{i}} \frac{\mathrm{1}}{\mathrm{2}\left({i}+\mathrm{1}\right)} \\ $$
Answered by prakash jain last updated on 08/Nov/15
Σ_(i=0) ^∞ (−1)^i (1/(i+1))=1−(1/2)+(1/3)−(1/4)+..=ln 2
$$\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{i}} \frac{\mathrm{1}}{{i}+\mathrm{1}}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{4}}+..=\mathrm{ln}\:\mathrm{2} \\ $$
Commented by Filup last updated on 07/Nov/15
Is there a simple way to show where  this answer comes from? A proof?
$$\mathrm{Is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{simple}\:\mathrm{way}\:\mathrm{to}\:\mathrm{show}\:\mathrm{where} \\ $$$$\mathrm{this}\:\mathrm{answer}\:\mathrm{comes}\:\mathrm{from}?\:\mathrm{A}\:\mathrm{proof}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *