Question Number 132211 by benjo_mathlover last updated on 12/Feb/21
$$ \\ $$$$\mathrm{how}\:\mathrm{fast}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\: \\ $$$$\mathrm{rectangle}\:\mathrm{changing}\:\mathrm{if}\:\mathrm{one}\:\mathrm{side}\:\mathrm{is}\:\mathrm{10} \\ $$$$\:\mathrm{cm}\:\mathrm{long}\:\mathrm{and}\:\mathrm{increasing}\:\mathrm{at}\:\mathrm{a} \\ $$$$\mathrm{rate}\:\mathrm{of}\:\mathrm{2}\:\mathrm{cm}/\mathrm{s}\:\mathrm{and}\:\mathrm{the}\:\mathrm{other}\:\mathrm{side}\:\mathrm{is}\: \\ $$$$\mathrm{8}\:\mathrm{cm}\:\mathrm{long}\:\mathrm{and}\:\mathrm{is}\:\mathrm{decreasing}\:\mathrm{at}\: \\ $$$$\mathrm{a}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{3}\:\mathrm{cm}/\mathrm{s} \\ $$
Answered by ajfour last updated on 12/Feb/21
$${A}={xy} \\ $$$$\frac{{dA}}{{dt}}={y}\left(\frac{{dx}}{{dt}}\right)+{x}\left(\frac{{dy}}{{dt}}\right) \\ $$$$\:\:\:=\left(\mathrm{8}{cm}\right)\left(\frac{\mathrm{2}{cm}}{{s}}\right)+\left(\mathrm{10}{cm}\right)\left(−\frac{\mathrm{3}{cm}}{{s}}\right) \\ $$$$\Rightarrow\:\frac{{dA}}{{dt}}=−\frac{\mathrm{14}{cm}^{\mathrm{2}} }{{s}} \\ $$$$\Rightarrow\:\:{Area}\:{is}\:{decreasing}\:{at}\:{a}\:{rate} \\ $$$${of}\:\:\frac{\mathrm{14}{cm}^{\mathrm{2}} }{{s}}. \\ $$