Question Number 76053 by john santuy last updated on 23/Dec/19

Commented by abdomathmax last updated on 23/Dec/19

Commented by benjo last updated on 23/Dec/19

Answered by MJS last updated on 23/Dec/19

Commented by benjo last updated on 23/Dec/19
![thanks sir]](https://www.tinkutara.com/question/Q76070.png)
Commented by vishalbhardwaj last updated on 23/Dec/19

Commented by MJS last updated on 23/Dec/19

Commented by vishalbhardwaj last updated on 23/Dec/19

Commented by MJS last updated on 24/Dec/19
![x^8 +x^2 =x^2 (x^6 +1)= =x^2 ((x^2 )^3 +1)= [((p^3 +1=(p+1)(p^2 −p+1))) ] =x^2 (x^2 +1)(x^4 −x^2 +1)= [((x^4 −x^2 +1=0 let x=(√q))),((q^2 −q+1=0 ⇒ q=−(1/2)±((√3)/2)i)),((these are the 2^(nd) and 3^(rd) solutions)),((of q^3 +1=0 ⇒ q=e^(±i(π/3)) )),((⇒ x=e^(±i(π/6)) ∨x=e^(±i((5π)/6)) )),((⇒ x^4 −x^2 +1=)),((=(x−e^(−i(π/6)) )(x−e^(i(π/6)) )(x−e^(−i((5π)/6)) )(x−e^(i((5π)/6)) )=)),((=(x^2 −(√3)x+1)(x^2 +(√3)x+1))) ] =x^2 (x^2 +1)(x^2 −(√3)x+1)(x^2 +(√3)x+1) ⇒ (1/(x^8 +x^2 ))=((ax+b)/x^2 )+((cx+d)/(x^2 +1))+((ex+f)/(x^2 −(√3)x+1))+((gx+h)/(x^2 +(√3)x+1)) now use your (hopefully) learned method](https://www.tinkutara.com/question/Q76117.png)