Menu Close

how-I-calculate-1-x-8-x-2-dx-




Question Number 76053 by john santuy last updated on 23/Dec/19
how I calculate ∫(1/(x^8 +x^2 ))dx ?
howIcalculate1x8+x2dx?
Commented by abdomathmax last updated on 23/Dec/19
decompose the fraction F(x)=(1/(x^2 +x^8 ))  and see  that  F(x)= (1/(x^2 (x^6  +1))) =(1/(x^2 ( (x^2 )^3  +1)))  =(1/(x^2 (x^2 +1)(x^4 −x^2  +1))) =....
decomposethefractionF(x)=1x2+x8andseethatF(x)=1x2(x6+1)=1x2((x2)3+1)=1x2(x2+1)(x4x2+1)=.
Commented by benjo last updated on 23/Dec/19
thanks sir
thankssir
Answered by MJS last updated on 23/Dec/19
(1/(x^8 +x^2 ))=(1/(x^2 (x^6 +1)))=  =(1/x^2 )−(1/(3(x^2 +1)))+(((√3)x+1)/(6(x^2 +(√3)x+1)))−(((√3)x−1)/(6(x^2 −(√3)x+1)))  now solve these
1x8+x2=1x2(x6+1)==1x213(x2+1)+3x+16(x2+3x+1)3x16(x23x+1)nowsolvethese
Commented by benjo last updated on 23/Dec/19
thanks sir]
thankssir]
Commented by vishalbhardwaj last updated on 23/Dec/19
sir this procedure is very difficult to undersatand  , please explain this once again when you are direct  ly taken any value of x
sirthisprocedureisverydifficulttoundersatand,pleaseexplainthisonceagainwhenyouaredirectlytakenanyvalueofx
Commented by MJS last updated on 23/Dec/19
the decomposing or the integration?
thedecomposingortheintegration?
Commented by vishalbhardwaj last updated on 23/Dec/19
decomposing
decomposing
Commented by MJS last updated on 24/Dec/19
x^8 +x^2 =x^2 (x^6 +1)=  =x^2 ((x^2 )^3 +1)=        [((p^3 +1=(p+1)(p^2 −p+1))) ]  =x^2 (x^2 +1)(x^4 −x^2 +1)=        [((x^4 −x^2 +1=0 let x=(√q))),((q^2 −q+1=0 ⇒ q=−(1/2)±((√3)/2)i)),((these are the 2^(nd)  and 3^(rd)  solutions)),((of q^3 +1=0 ⇒ q=e^(±i(π/3)) )),((⇒ x=e^(±i(π/6)) ∨x=e^(±i((5π)/6)) )),((⇒ x^4 −x^2 +1=)),((=(x−e^(−i(π/6)) )(x−e^(i(π/6)) )(x−e^(−i((5π)/6)) )(x−e^(i((5π)/6)) )=)),((=(x^2 −(√3)x+1)(x^2 +(√3)x+1))) ]  =x^2 (x^2 +1)(x^2 −(√3)x+1)(x^2 +(√3)x+1)  ⇒  (1/(x^8 +x^2 ))=((ax+b)/x^2 )+((cx+d)/(x^2 +1))+((ex+f)/(x^2 −(√3)x+1))+((gx+h)/(x^2 +(√3)x+1))  now use your (hopefully) learned method
x8+x2=x2(x6+1)==x2((x2)3+1)=[p3+1=(p+1)(p2p+1)]=x2(x2+1)(x4x2+1)=[x4x2+1=0letx=qq2q+1=0q=12±32ithesearethe2ndand3rdsolutionsofq3+1=0q=e±iπ3x=e±iπ6x=e±i5π6x4x2+1==(xeiπ6)(xeiπ6)(xei5π6)(xei5π6)==(x23x+1)(x2+3x+1)]=x2(x2+1)(x23x+1)(x2+3x+1)1x8+x2=ax+bx2+cx+dx2+1+ex+fx23x+1+gx+hx2+3x+1nowuseyour(hopefully)learnedmethod

Leave a Reply

Your email address will not be published. Required fields are marked *