Menu Close

How-many-digits-are-present-in-periodic-part-for-decimal-expansion-of-1-7-11-




Question Number 427 by 9999 last updated on 25/Jan/15
How many digits are present in  periodic part for decimal expansion  of (1/7^(11) )?
$$\mathrm{How}\:\mathrm{many}\:\mathrm{digits}\:\mathrm{are}\:\mathrm{present}\:\mathrm{in} \\ $$$$\mathrm{periodic}\:\mathrm{part}\:\mathrm{for}\:\mathrm{decimal}\:\mathrm{expansion} \\ $$$$\mathrm{of}\:\frac{\mathrm{1}}{\mathrm{7}^{\mathrm{11}} }? \\ $$
Commented by 123456 last updated on 02/Jan/15
10^n ≡1(mod7^(11) )
$$\mathrm{10}^{{n}} \equiv\mathrm{1}\left(\mathrm{mod7}^{\mathrm{11}} \right) \\ $$
Answered by prakash jain last updated on 02/Jan/15
6×7^(10)
$$\mathrm{6}×\mathrm{7}^{\mathrm{10}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *