Question Number 3850 by Rasheed Soomro last updated on 22/Dec/15
$${How}\:{many}\:{dimention}/{s}\:{does}\:{the}\:{point}\:{have}? \\ $$
Commented by prakash jain last updated on 22/Dec/15
$$\mathrm{In}\:\mathrm{3D}\:\mathrm{cartesian}\:\mathrm{coordinate}\:\mathrm{you}\:\mathrm{need}\:\left({x},{y},{z}\right) \\ $$$$\mathrm{to}\:\mathrm{uniquely}\:\mathrm{describe}\:\mathrm{a}\:\mathrm{point}. \\ $$
Commented by Rasheed Soomro last updated on 22/Dec/15
$$\mathrm{In}\:\mathrm{2D}\:\:\:\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{is}\:\mathrm{needed}\:\mathrm{to}\:\mathrm{describe}\:\mathrm{apoint}. \\ $$$$\mathrm{Does}\:\mathrm{this}\:\mathrm{mean}\:\mathrm{that}\:\mathrm{a}\:\mathrm{point}\:\mathrm{can}\:\mathrm{be}\:\mathrm{considered} \\ $$$$\mathrm{of}\:\mathrm{any}\:\mathrm{dimention}/\mathrm{s}\:? \\ $$
Commented by 123456 last updated on 22/Dec/15
$$\mathrm{0} \\ $$
Commented by prakash jain last updated on 22/Dec/15
$$\mathrm{A}\:\mathrm{point}\:\mathrm{itself}\:\mathrm{is}\:\mathrm{dimensionless}\:\left(\mathrm{L}^{\mathrm{0}} \right). \\ $$$$\mathrm{Positioning}\:\mathrm{of}\:\mathrm{point}\:\mathrm{or}\:\mathrm{line}\:\mathrm{or}\:\mathrm{any}\:\mathrm{figure} \\ $$$$\mathrm{in}\:{n}−\mathrm{dimension}\:\mathrm{space}\:\mathrm{requires}\:\mathrm{information} \\ $$$$\mathrm{about}\:\mathrm{all}\:\mathrm{dimensions}. \\ $$
Commented by Rasheed Soomro last updated on 22/Dec/15
$${Is}\:\:'\:{the}\:{point}\:{has}\:{no}\:{dimention}\:'\:{is} \\ $$$${a}\:\boldsymbol{\mathrm{postulate}}\:\:{about}\:{point}? \\ $$$$\left[\mathrm{0},\mathrm{1}\right]\:{is}\:{anologus}\:{to}\:{line}\:{segment} \\ $$$$\left(−\infty,+\infty\right)\:{is}\:{anologus}\:{to}\:{line},{I}\:{think}. \\ $$
Commented by 123456 last updated on 22/Dec/15
$$\mathrm{a}\:\mathrm{line}\:\mathrm{is}\:\mathrm{made}\:\mathrm{by}\:\mathrm{inifnite}\:\mathrm{number}\:\mathrm{of}\:\mathrm{points} \\ $$$$\mathrm{example}: \\ $$$$\mathrm{suppose}\:\mathrm{that}\:\mathrm{each}\:\mathrm{number}\:\mathrm{is}\:\mathrm{a}\:\mathrm{point},\:\mathrm{then} \\ $$$$\mathrm{look}\:\mathrm{at} \\ $$$$\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\mathrm{its}\:\mathrm{a}\:\mathrm{line},\:\mathrm{and}\:\mathrm{you}\:\mathrm{can}\:\mathrm{choose}\:\mathrm{infinite} \\ $$$$\mathrm{numbers}\:\mathrm{from}\:\mathrm{these}\:\mathrm{line} \\ $$
Commented by Filup last updated on 23/Dec/15
$${A}\:\mathrm{point}\:\mathrm{is}\:\mathrm{dimensionless}\:\mathrm{but}\:\mathrm{it}\:\mathrm{points} \\ $$$$\mathrm{in}\:\mathrm{all}\:\mathrm{directions} \\ $$