Menu Close

How-many-geometric-progressions-is-are-possible-contauning-27-8-and-12-as-three-of-its-their-terms-a-1-b-2-c-4-d-infinitely-many-




Question Number 12304 by Gaurav3651 last updated on 18/Apr/17
How many geometric progressions  is/are possible contauning 27,8  and 12 as three of its/their terms?  (a)  1  (b)  2  (c)  4  (d)  infinitely many
$${How}\:{many}\:{geometric}\:{progressions} \\ $$$${is}/{are}\:{possible}\:{contauning}\:\mathrm{27},\mathrm{8} \\ $$$${and}\:\mathrm{12}\:{as}\:{three}\:{of}\:{its}/{their}\:{terms}? \\ $$$$\left({a}\right)\:\:\mathrm{1} \\ $$$$\left({b}\right)\:\:\mathrm{2} \\ $$$$\left({c}\right)\:\:\mathrm{4} \\ $$$$\left({d}\right)\:\:{infinitely}\:{many} \\ $$$$ \\ $$
Answered by mrW1 last updated on 18/Apr/17
let′s assume 8, 12 and 27 are 3 terms of  a GP with the common ratio q:  8...(n−1 terms)...12....(m−1 terms)...27    ((27)/(12))=((3×3×3)/(3×2×2))=((3×3)/(2×2))=q^m         (i)  ((12)/8)=((2×2×3)/(2×2×2))=(3/2)=q^n              (ii)  q^(m−n) =(3/2)         (i)/(ii)  ⇒ q=((3/2))^(1/(m−n))   q^n =((3/2))^(n/(m−n)) =(3/2)         from (ii)  ⇒ (n/(m−n))=1  n=m−n  ⇒ m=2n  ⇒ q=((3/2))^(1/n)       from (ii)  i.e.  for any n≥1 we can always find  a GP  whose 1st term is 8, (1+n)−th   term is 12 and (1+3n)−th term is 27,  and their common ratio is q=((3/2))^(1/n) :  T_1 =8  ..... (n−1 terms between)  T_(1+n) =8×q^n =8×((3/2))^(n/n) =12  ..... (2n−1 terms between)  T_(1+3n) =8×q^(3n) =8×((3/2))^((3n)/n) =8×((3/2))^3 =27     since any n≥1 fulfills this, we have  infinitely many such GP.    ⇒ Answer (d) is correct.    Examples  n=1:  8,12,18,27.....    n=2:  8,8×((3/2))^(1/2) ,12,12×((3/2))^(1/2) ,18,18×((3/2))^(1/2) ,27....    n=3:  8,8×((3/2))^(1/3) ,8×((3/2))^(2/3) ,12,12×((3/2))^(1/3) ,12×((3/2))^(2/3) ,18,18×((3/2))^(1/3) ,18×((3/2))^(2/3) ,27....
$${let}'{s}\:{assume}\:\mathrm{8},\:\mathrm{12}\:{and}\:\mathrm{27}\:{are}\:\mathrm{3}\:{terms}\:{of} \\ $$$${a}\:{GP}\:{with}\:{the}\:{common}\:{ratio}\:{q}: \\ $$$$\mathrm{8}…\left({n}−\mathrm{1}\:{terms}\right)…\mathrm{12}….\left({m}−\mathrm{1}\:{terms}\right)…\mathrm{27} \\ $$$$ \\ $$$$\frac{\mathrm{27}}{\mathrm{12}}=\frac{\mathrm{3}×\mathrm{3}×\mathrm{3}}{\mathrm{3}×\mathrm{2}×\mathrm{2}}=\frac{\mathrm{3}×\mathrm{3}}{\mathrm{2}×\mathrm{2}}={q}^{{m}} \:\:\:\:\:\:\:\:\left({i}\right) \\ $$$$\frac{\mathrm{12}}{\mathrm{8}}=\frac{\mathrm{2}×\mathrm{2}×\mathrm{3}}{\mathrm{2}×\mathrm{2}×\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}}={q}^{{n}} \:\:\:\:\:\:\:\:\:\:\:\:\:\left({ii}\right) \\ $$$${q}^{{m}−{n}} =\frac{\mathrm{3}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\left({i}\right)/\left({ii}\right) \\ $$$$\Rightarrow\:{q}=\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{{m}−{n}}} \\ $$$${q}^{{n}} =\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{{n}}{{m}−{n}}} =\frac{\mathrm{3}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:{from}\:\left({ii}\right) \\ $$$$\Rightarrow\:\frac{{n}}{{m}−{n}}=\mathrm{1} \\ $$$${n}={m}−{n} \\ $$$$\Rightarrow\:{m}=\mathrm{2}{n} \\ $$$$\Rightarrow\:{q}=\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{{n}}} \:\:\:\:\:\:{from}\:\left({ii}\right) \\ $$$${i}.{e}.\:\:{for}\:{any}\:{n}\geqslant\mathrm{1}\:{we}\:{can}\:{always}\:{find} \\ $$$${a}\:{GP}\:\:{whose}\:\mathrm{1}{st}\:{term}\:{is}\:\mathrm{8},\:\left(\mathrm{1}+{n}\right)−{th}\: \\ $$$${term}\:{is}\:\mathrm{12}\:{and}\:\left(\mathrm{1}+\mathrm{3}{n}\right)−{th}\:{term}\:{is}\:\mathrm{27}, \\ $$$${and}\:{their}\:{common}\:{ratio}\:{is}\:{q}=\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{{n}}} : \\ $$$${T}_{\mathrm{1}} =\mathrm{8} \\ $$$$…..\:\left({n}−\mathrm{1}\:{terms}\:{between}\right) \\ $$$${T}_{\mathrm{1}+{n}} =\mathrm{8}×{q}^{{n}} =\mathrm{8}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{{n}}{{n}}} =\mathrm{12} \\ $$$$…..\:\left(\mathrm{2}{n}−\mathrm{1}\:{terms}\:{between}\right) \\ $$$${T}_{\mathrm{1}+\mathrm{3}{n}} =\mathrm{8}×{q}^{\mathrm{3}{n}} =\mathrm{8}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{3}{n}}{{n}}} =\mathrm{8}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{3}} =\mathrm{27}\: \\ $$$$ \\ $$$${since}\:{any}\:{n}\geqslant\mathrm{1}\:{fulfills}\:{this},\:{we}\:{have} \\ $$$${infinitely}\:{many}\:{such}\:{GP}. \\ $$$$ \\ $$$$\Rightarrow\:{Answer}\:\left({d}\right)\:{is}\:{correct}. \\ $$$$ \\ $$$${Examples} \\ $$$${n}=\mathrm{1}: \\ $$$$\mathrm{8},\mathrm{12},\mathrm{18},\mathrm{27}….. \\ $$$$ \\ $$$${n}=\mathrm{2}: \\ $$$$\mathrm{8},\mathrm{8}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} ,\mathrm{12},\mathrm{12}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} ,\mathrm{18},\mathrm{18}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} ,\mathrm{27}…. \\ $$$$ \\ $$$${n}=\mathrm{3}: \\ $$$$\mathrm{8},\mathrm{8}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} ,\mathrm{8}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} ,\mathrm{12},\mathrm{12}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} ,\mathrm{12}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} ,\mathrm{18},\mathrm{18}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} ,\mathrm{18}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} ,\mathrm{27}…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *