Menu Close

How-many-idempotent-matrices-can-be-formed-from-a-diagonal-matrix-A-with-the-elements-a-i-i-for-i-1-2-3-n-




Question Number 6316 by sanusihammed last updated on 23/Jun/16
How many idempotent matrices can be formed from a  diagonal matrix A with the elements   a(i,i) for i = {1,2,3,.......n}
$${How}\:{many}\:{idempotent}\:{matrices}\:{can}\:{be}\:{formed}\:{from}\:{a} \\ $$$${diagonal}\:{matrix}\:{A}\:{with}\:{the}\:{elements}\: \\ $$$${a}\left({i},{i}\right)\:{for}\:{i}\:=\:\left\{\mathrm{1},\mathrm{2},\mathrm{3},…….{n}\right\} \\ $$
Answered by nburiburu last updated on 23/Jun/16
 in R^(n×n) :   A idempotent then A^2 =A×A=A  if A=D diagonal, then  A^2 =[d_(ii) ×d_(ii) ]=[d_(ii) ^2 ]=[d_(ii) ] ∀i  then d_(ii) ^2 =d_(ii)  => d_(ii) =1 or 0 ∀i  Now it has n elements and could be only 2 numbers on each place.  So, there are 2^n  possibles A.
$$\:{in}\:\mathbb{R}^{{n}×{n}} :\: \\ $$$${A}\:{idempotent}\:{then}\:{A}^{\mathrm{2}} ={A}×{A}={A} \\ $$$${if}\:{A}={D}\:{diagonal},\:{then} \\ $$$${A}^{\mathrm{2}} =\left[{d}_{{ii}} ×{d}_{{ii}} \right]=\left[{d}_{{ii}} ^{\mathrm{2}} \right]=\left[{d}_{{ii}} \right]\:\forall{i} \\ $$$${then}\:{d}_{{ii}} ^{\mathrm{2}} ={d}_{{ii}} \:=>\:{d}_{{ii}} =\mathrm{1}\:{or}\:\mathrm{0}\:\forall{i} \\ $$$${Now}\:{it}\:{has}\:{n}\:{elements}\:{and}\:{could}\:{be}\:{only}\:\mathrm{2}\:{numbers}\:{on}\:{each}\:{place}. \\ $$$${So},\:{there}\:{are}\:\mathrm{2}^{{n}} \:{possibles}\:{A}. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *