Menu Close

How-many-ordered-pairs-m-n-are-there-for-1-m-n-100-such-that-7-m-7-n-is-divisble-by-5-




Question Number 2878 by Yozzi last updated on 29/Nov/15
How many ordered pairs (m,n) are there  for 1≤m,n≤100 such that 7^m +7^n   is divisble by 5?
Howmanyorderedpairs(m,n)aretherefor1m,n100suchthat7m+7nisdivisbleby5?
Commented by prakash jain last updated on 29/Nov/15
I read the statment 1≤m,n≤100 as 2 separate  statement. Will update the answer.  1≤m  n≤100
Ireadthestatment1m,n100as2separatestatement.Willupdatetheanswer.1mn100
Answered by prakash jain last updated on 29/Nov/15
7^m +7^n ≡0 (mod 5)  2^m +2^n ≡0 (mod 5)  k∈{0,1,2,3}  k=4j⇒2^k ≡1 (mod 5)  k=4j+1⇒2^k ≡2 (mod 5)  k=4j+2⇒2^k ≡4 (mod 5)  k=4j+3⇒2^k ≡3 (mod 5)  Solution for m and n  j,l∈{0,1,2,3}  m=4j, n=4l+2  m=4j+1, n=4l+3  m=4j+2, n=4l  m=4j+3, n=4l+1  1≤n≤100, 1≤m≤100  n=4l                 1≤l≤25      m=4j+2      0≤j≤24  n=4l+1           0≤l≤24     m=4j+3,     0≤j≤24  n=4l+2            0≤l≤24     m=4j             1≤j≤25  n=4l+3            0≤l≤24     m=4j+1       0≤j≤24  Total number of pairs=4×25^2 =625×4=2500
7m+7n0(mod5)2m+2n0(mod5)k{0,1,2,3}k=4j2k1(mod5)k=4j+12k2(mod5)k=4j+22k4(mod5)k=4j+32k3(mod5)Solutionformandnj,l{0,1,2,3}m=4j,n=4l+2m=4j+1,n=4l+3m=4j+2,n=4lm=4j+3,n=4l+11n100,1m100n=4l1l25m=4j+20j24n=4l+10l24m=4j+3,0j24n=4l+20l24m=4j1j25n=4l+30l24m=4j+10j24Totalnumberofpairs=4×252=625×4=2500
Answered by Rasheed Soomro last updated on 30/Nov/15
  Let 7^m ≡r(mod 5)  Experimenting and Observing for values of m and r:        7^((0,1,2,3,4,5,6,...)) ≡(1,2,4,3,1,2,4,...) (mod 5)  Generalizing:  7^(4k) ≡1(mod 5)             ∥        7^(4h+2) ≡4(mod 5)  7^(4k+1) ≡2(mod 5)        ∥         7^(4h+3) ≡3(mod 5)  7^(4k+2) ≡4(mod 5)        ∥         7^(4h) ≡1(mod 5)  7^(4k+3) ≡3(mod 5)        ∥          7^(4h+1) ≡2(mod 5)  Adding corresponding  7^(4k) +7^(4h+2) ≡0(mod 5)  7^(4k+1) +7^(4h+3) ≡0(mod 5)  7^(4k+2) +7^(4h) ≡0(mod 5)  7^(4k+3) +7^(4h+1) ≡0(mod 5)  Four types  of ordered pairs [(m,n)] satisfying the  given statement.  1≤(4k,4h+2)≤100  1≤(4k+1,4h+3)≤100  1≤(4k+2,4h)≤100  1≤(4k+3,4h+1)≤100  Now it′s easy to count  Suppose there are x 4k+1 type numbers between 1 and  100 inclusive and  y 4h+3 type numbers between 1 and  100 inclusive THEN            There are xy ordered pairs of such numbers.  A multiplicational table  is easy way of recording and  counting all required (m,n)′s
Let7mr(mod5)ExperimentingandObservingforvaluesofmandr:7(0,1,2,3,4,5,6,)(1,2,4,3,1,2,4,)(mod5)Generalizing:74k1(mod5)74h+24(mod5)74k+12(mod5)74h+33(mod5)74k+24(mod5)74h1(mod5)74k+33(mod5)74h+12(mod5)Addingcorresponding74k+74h+20(mod5)74k+1+74h+30(mod5)74k+2+74h0(mod5)74k+3+74h+10(mod5)Fourtypesoforderedpairs[(m,n)]satisfyingthegivenstatement.1(4k,4h+2)1001(4k+1,4h+3)1001(4k+2,4h)1001(4k+3,4h+1)100NowitseasytocountSupposetherearex4k+1typenumbersbetween1and100inclusiveandy4h+3typenumbersbetween1and100inclusiveTHENTherearexyorderedpairsofsuchnumbers.Amultiplicationaltableiseasywayofrecordingandcountingallrequired(m,n)s
Commented by prakash jain last updated on 29/Nov/15
Thanks.  I thought  1≤m  n≤100
Thanks.Ithought1mn100
Commented by Rasheed Soomro last updated on 29/Nov/15
It′s not misreading.Actually the statement can also  be  read in that way.
Itsnotmisreading.Actuallythestatementcanalsobereadinthatway.

Leave a Reply

Your email address will not be published. Required fields are marked *