Menu Close

how-much-matrices-of-integers-number-A-a-b-c-d-if-A-2-A-2I-c-0-det-A-4-




Question Number 12046 by 7991 last updated on 10/Apr/17
how much matrices of integers number  A= [(a,b),(c,d) ]if A^2 +A=2I, c=0, det(A)=4
howmuchmatricesofintegersnumberA=[abcd]ifA2+A=2I,c=0,det(A)=4
Answered by sma3l2996 last updated on 10/Apr/17
A^2 = [(a,b),(0,d) ] [(a,b),(0,d) ]= [(a^2 ,(ab+db)),(0,d^2 ) ]  A^2 +A= [((a^2 +a),(ab+db+d)),(0,(d^2 +d)) ]= [(2,0),(0,2) ]  a^2 +a=2 ; d^2 +d=2 ; ab+db+d=0  det(A)=ad=4  (i):a^2 +a−2=0 ⇔ a=1 or a=−2  (ii):ad=4⇔d=4 or d=−2  (iii):d^2 +d−2=0⇔d=1 or d=−2  so d=a=−2  ab+db+d=0⇔ −4b−2=0 ⇔ b=−(1/2)  so A= [((−2),((−1)/2)),(0,(−2)) ]
A2=[ab0d][ab0d]=[a2ab+db0d2]A2+A=[a2+aab+db+d0d2+d]=[2002]a2+a=2;d2+d=2;ab+db+d=0det(A)=ad=4(i):a2+a2=0a=1ora=2(ii):ad=4d=4ord=2(iii):d2+d2=0d=1ord=2sod=a=2ab+db+d=04b2=0b=12soA=[21202]

Leave a Reply

Your email address will not be published. Required fields are marked *