Menu Close

how-the-gravity-work-on-a-R-4-universe-does-any-R-3-people-will-be-atracted-by-some-ghost-object-




Question Number 4724 by 123456 last updated on 29/Feb/16
how the gravity work on a R^4  universe?  does any R^3  people will be atracted by  some “ghost” object?
$$\mathrm{how}\:\mathrm{the}\:\mathrm{gravity}\:\mathrm{work}\:\mathrm{on}\:\mathrm{a}\:\mathbb{R}^{\mathrm{4}} \:\mathrm{universe}? \\ $$$$\mathrm{does}\:\mathrm{any}\:\mathbb{R}^{\mathrm{3}} \:\mathrm{people}\:\mathrm{will}\:\mathrm{be}\:\mathrm{atracted}\:\mathrm{by} \\ $$$$\mathrm{some}\:“\mathrm{ghost}''\:\mathrm{object}? \\ $$
Commented by Yozzii last updated on 29/Feb/16
R^4  is the domain giving the field F  of positions u=(a_1 ,a_2 ,a_3 ,a_4 ) in   4−dimensional space. Gravity g is a  vector which hence must be able to  act along any straight line in F. We  can write g=(g_1 (a_1 ),g_2 (a_2 ),g_3 (a_3 ),g_4 (a_4 ))  where g_i    (1≤i≤4) are gravitational  force functions of position relative to a  body of mass M. In R^3  gravity is  dependent on the masses m_i  involved  and position. We′d then expect that  g_i  are dependent on the positions of  bodies and their masses. Rewriting g  we have   g= (((g_1 (m,M,a_1 ,b_1 ))),((g_2 (m,M,a_2 ,b_2 ))),((g_3 (m,M,a_3 ,b_3 ))),((g_4 (m,M,a_4 ,b_4 ))) )  .
$$\mathbb{R}^{\mathrm{4}} \:{is}\:{the}\:{domain}\:{giving}\:{the}\:{field}\:{F} \\ $$$${of}\:{positions}\:\boldsymbol{{u}}=\left({a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ,{a}_{\mathrm{3}} ,{a}_{\mathrm{4}} \right)\:{in}\: \\ $$$$\mathrm{4}−{dimensional}\:{space}.\:{Gravity}\:\boldsymbol{{g}}\:{is}\:{a} \\ $$$${vector}\:{which}\:{hence}\:{must}\:{be}\:{able}\:{to} \\ $$$${act}\:{along}\:{any}\:{straight}\:{line}\:{in}\:{F}.\:{We} \\ $$$${can}\:{write}\:\boldsymbol{{g}}=\left({g}_{\mathrm{1}} \left({a}_{\mathrm{1}} \right),{g}_{\mathrm{2}} \left({a}_{\mathrm{2}} \right),{g}_{\mathrm{3}} \left({a}_{\mathrm{3}} \right),{g}_{\mathrm{4}} \left({a}_{\mathrm{4}} \right)\right) \\ $$$${where}\:{g}_{{i}} \:\:\:\left(\mathrm{1}\leqslant{i}\leqslant\mathrm{4}\right)\:{are}\:{gravitational} \\ $$$${force}\:{functions}\:{of}\:{position}\:{relative}\:{to}\:{a} \\ $$$${body}\:{of}\:{mass}\:{M}.\:{In}\:\mathbb{R}^{\mathrm{3}} \:{gravity}\:{is} \\ $$$${dependent}\:{on}\:{the}\:{masses}\:{m}_{{i}} \:{involved} \\ $$$${and}\:{position}.\:{We}'{d}\:{then}\:{expect}\:{that} \\ $$$${g}_{{i}} \:{are}\:{dependent}\:{on}\:{the}\:{positions}\:{of} \\ $$$${bodies}\:{and}\:{their}\:{masses}.\:{Rewriting}\:\boldsymbol{{g}} \\ $$$${we}\:{have}\: \\ $$$$\boldsymbol{{g}}=\begin{pmatrix}{{g}_{\mathrm{1}} \left({m},{M},{a}_{\mathrm{1}} ,{b}_{\mathrm{1}} \right)}\\{{g}_{\mathrm{2}} \left({m},{M},{a}_{\mathrm{2}} ,{b}_{\mathrm{2}} \right)}\\{{g}_{\mathrm{3}} \left({m},{M},{a}_{\mathrm{3}} ,{b}_{\mathrm{3}} \right)}\\{{g}_{\mathrm{4}} \left({m},{M},{a}_{\mathrm{4}} ,{b}_{\mathrm{4}} \right)}\end{pmatrix}\:\:. \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *