Menu Close

how-to-evaluate-this-one-P-1-1-1958-1-1-1959-1-1-1960-1-1-2017-1-1-2018-1-1-2019-P-




Question Number 137324 by greg_ed last updated on 01/Apr/21
how to evaluate this one :  P = (1+ (1/(1958)))(1+ (1/(1959)))(1+ (1/(1960)))...(1+ (1/(2017)))(1+ (1/(2018)))(1+ (1/(2019)))  P = ?
$$\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{evaluate}}\:\boldsymbol{\mathrm{this}}\:\boldsymbol{\mathrm{one}}\:: \\ $$$$\mathrm{P}\:=\:\left(\mathrm{1}+\:\frac{\mathrm{1}}{\mathrm{1958}}\right)\left(\mathrm{1}+\:\frac{\mathrm{1}}{\mathrm{1959}}\right)\left(\mathrm{1}+\:\frac{\mathrm{1}}{\mathrm{1960}}\right)…\left(\mathrm{1}+\:\frac{\mathrm{1}}{\mathrm{2017}}\right)\left(\mathrm{1}+\:\frac{\mathrm{1}}{\mathrm{2018}}\right)\left(\mathrm{1}+\:\frac{\mathrm{1}}{\mathrm{2019}}\right) \\ $$$$\boldsymbol{\mathrm{P}}\:=\:?\: \\ $$
Answered by som(math1967) last updated on 01/Apr/21
P=(((1959)/(1958)))(((1960)/(1959)))(((1961)/(1960)))..(((2019)/(2018)))(((2020)/(2019)))  P=((2020)/(1958))=((1010)/(979))
$${P}=\left(\frac{\mathrm{1959}}{\mathrm{1958}}\right)\left(\frac{\mathrm{1960}}{\mathrm{1959}}\right)\left(\frac{\mathrm{1961}}{\mathrm{1960}}\right)..\left(\frac{\mathrm{2019}}{\mathrm{2018}}\right)\left(\frac{\mathrm{2020}}{\mathrm{2019}}\right) \\ $$$${P}=\frac{\mathrm{2020}}{\mathrm{1958}}=\frac{\mathrm{1010}}{\mathrm{979}} \\ $$
Commented by greg_ed last updated on 01/Apr/21
thank u very much, sir som(math1967)
$$\boldsymbol{\mathrm{thank}}\:\boldsymbol{\mathrm{u}}\:\boldsymbol{\mathrm{very}}\:\boldsymbol{\mathrm{much}},\:\boldsymbol{\mathrm{sir}}\:\boldsymbol{\mathrm{som}}\left(\boldsymbol{\mathrm{math}}\mathrm{1967}\right) \\ $$
Commented by som(math1967) last updated on 01/Apr/21
welcome
$${welcome} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *