Menu Close

how-to-find-n-term-from-S-n-n-2-7n-2-




Question Number 77722 by jagoll last updated on 09/Jan/20
how to find   n−term from  S_n =n^2 +7n+2 ?
$${how}\:{to}\:{find}\: \\ $$$${n}−{term}\:{from} \\ $$$${S}_{{n}} ={n}^{\mathrm{2}} +\mathrm{7}{n}+\mathrm{2}\:? \\ $$
Commented by Kunal12588 last updated on 09/Jan/20
pls refer Qno.  76793
$${pls}\:{refer}\:{Qno}.\:\:\mathrm{76793} \\ $$
Commented by jagoll last updated on 09/Jan/20
why T_1  from T_n =2n+6 not  same from S_n ?   i think T_n =2n+6 not valid
$${why}\:{T}_{\mathrm{1}} \:{from}\:{T}_{{n}} =\mathrm{2}{n}+\mathrm{6}\:{not} \\ $$$${same}\:{from}\:{S}_{{n}} ?\: \\ $$$${i}\:{think}\:{T}_{{n}} =\mathrm{2}{n}+\mathrm{6}\:{not}\:{valid} \\ $$
Answered by mr W last updated on 09/Jan/20
S_n =n^2 +7n+2  S_(n−1) =(n−1)^2 +7(n−1)+2  but S_n =S_(n−1) +T_n   ⇒T_n =S_n −S_(n−1) =n^2 +7n+2−(n−1)^2 −7(n−1)−2  =2n−1+7  =2n+6  ⇒T_n =2(n+3)
$${S}_{{n}} ={n}^{\mathrm{2}} +\mathrm{7}{n}+\mathrm{2} \\ $$$${S}_{{n}−\mathrm{1}} =\left({n}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{7}\left({n}−\mathrm{1}\right)+\mathrm{2} \\ $$$${but}\:{S}_{{n}} ={S}_{{n}−\mathrm{1}} +{T}_{{n}} \\ $$$$\Rightarrow{T}_{{n}} ={S}_{{n}} −{S}_{{n}−\mathrm{1}} ={n}^{\mathrm{2}} +\mathrm{7}{n}+\mathrm{2}−\left({n}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{7}\left({n}−\mathrm{1}\right)−\mathrm{2} \\ $$$$=\mathrm{2}{n}−\mathrm{1}+\mathrm{7} \\ $$$$=\mathrm{2}{n}+\mathrm{6} \\ $$$$\Rightarrow{T}_{{n}} =\mathrm{2}\left({n}+\mathrm{3}\right) \\ $$
Commented by jagoll last updated on 09/Jan/20
it mean T_1 = S_1 −S_(0 )   what the meaning S_(0 ) ? sum of zero term?
$${it}\:{mean}\:{T}_{\mathrm{1}} =\:{S}_{\mathrm{1}} −{S}_{\mathrm{0}\:} \\ $$$${what}\:{the}\:{meaning}\:{S}_{\mathrm{0}\:} ?\:{sum}\:{of}\:{zero}\:{term}? \\ $$
Commented by mr W last updated on 09/Jan/20
we must define a begin of the sequence.  you can take T_1  as begin, then  S_1 =T_1 =8  S_2 =S_1 +T_2   ...  you can take T_0  as begin, then  S_0 =T_0 =6  S_1 =S_1 +T_1   S_2 =S_1 +T_2   ...  you can take T_(−100)  as begin, then  S_(−100) =T_(−100) =−194  S_(−99) =S_(−99) +T_(−99)   S_(−98) =S_(−98) +T_(−98)   ...  S_1 =S_1 +T_1   S_2 =S_1 +T_2   ...    no matter how you define the begin  of the sequence, it doesn′t affect that  T_n =2(n+3) and  S_n =n^2 +7n+2    note:  if you don′t define T_1  as the begin of  the sequence, you must know that T_n   doesn′t mean the n−th term of the  sequence!  with T_1 , T_2 ,T_3 ,...,T_n ,... the n−th term is T_n .  but with T_0 ,T_1 , T_2 ,T_3 ,...,T_n ,... the n−th term is T_(n−1) .  so generally you should not take T_n   as the n−th term, but as the term  corresponding to n, i.e. as T(n).
$${we}\:{must}\:{define}\:{a}\:{begin}\:{of}\:{the}\:{sequence}. \\ $$$${you}\:{can}\:{take}\:{T}_{\mathrm{1}} \:{as}\:{begin},\:{then} \\ $$$${S}_{\mathrm{1}} ={T}_{\mathrm{1}} =\mathrm{8} \\ $$$${S}_{\mathrm{2}} ={S}_{\mathrm{1}} +{T}_{\mathrm{2}} \\ $$$$… \\ $$$${you}\:{can}\:{take}\:{T}_{\mathrm{0}} \:{as}\:{begin},\:{then} \\ $$$${S}_{\mathrm{0}} ={T}_{\mathrm{0}} =\mathrm{6} \\ $$$${S}_{\mathrm{1}} ={S}_{\mathrm{1}} +{T}_{\mathrm{1}} \\ $$$${S}_{\mathrm{2}} ={S}_{\mathrm{1}} +{T}_{\mathrm{2}} \\ $$$$… \\ $$$${you}\:{can}\:{take}\:{T}_{−\mathrm{100}} \:{as}\:{begin},\:{then} \\ $$$${S}_{−\mathrm{100}} ={T}_{−\mathrm{100}} =−\mathrm{194} \\ $$$${S}_{−\mathrm{99}} ={S}_{−\mathrm{99}} +{T}_{−\mathrm{99}} \\ $$$${S}_{−\mathrm{98}} ={S}_{−\mathrm{98}} +{T}_{−\mathrm{98}} \\ $$$$… \\ $$$${S}_{\mathrm{1}} ={S}_{\mathrm{1}} +{T}_{\mathrm{1}} \\ $$$${S}_{\mathrm{2}} ={S}_{\mathrm{1}} +{T}_{\mathrm{2}} \\ $$$$… \\ $$$$ \\ $$$${no}\:{matter}\:{how}\:{you}\:{define}\:{the}\:{begin} \\ $$$${of}\:{the}\:{sequence},\:{it}\:{doesn}'{t}\:{affect}\:{that} \\ $$$${T}_{{n}} =\mathrm{2}\left({n}+\mathrm{3}\right)\:{and} \\ $$$${S}_{{n}} ={n}^{\mathrm{2}} +\mathrm{7}{n}+\mathrm{2} \\ $$$$ \\ $$$${note}: \\ $$$${if}\:{you}\:{don}'{t}\:{define}\:{T}_{\mathrm{1}} \:{as}\:{the}\:{begin}\:{of} \\ $$$${the}\:{sequence},\:{you}\:{must}\:{know}\:{that}\:{T}_{{n}} \\ $$$${doesn}'{t}\:{mean}\:{the}\:{n}−{th}\:{term}\:{of}\:{the} \\ $$$${sequence}! \\ $$$${with}\:{T}_{\mathrm{1}} ,\:{T}_{\mathrm{2}} ,{T}_{\mathrm{3}} ,…,{T}_{{n}} ,…\:{the}\:{n}−{th}\:{term}\:{is}\:{T}_{{n}} . \\ $$$${but}\:{with}\:{T}_{\mathrm{0}} ,{T}_{\mathrm{1}} ,\:{T}_{\mathrm{2}} ,{T}_{\mathrm{3}} ,…,{T}_{{n}} ,…\:{the}\:{n}−{th}\:{term}\:{is}\:{T}_{{n}−\mathrm{1}} . \\ $$$${so}\:{generally}\:{you}\:{should}\:{not}\:{take}\:{T}_{{n}} \\ $$$${as}\:{the}\:{n}−{th}\:{term},\:{but}\:{as}\:{the}\:{term} \\ $$$${corresponding}\:{to}\:{n},\:{i}.{e}.\:{as}\:{T}\left({n}\right). \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *