Menu Close

how-to-find-the-Fourier-series-of-f-x-x-0-lt-x-lt-1-8-




Question Number 77285 by jagoll last updated on 05/Jan/20
how to find the   Fourier series of f(x) = x , 0 < x<(1/8)
howtofindtheFourierseriesoff(x)=x,0<x<18
Answered by john santu last updated on 05/Jan/20
because f(x) an odd function   , we used the sine series.  periode T = (1/8) and L = (1/(16))  f(x) = Σ_(n=1) ^∞  b_n sin (((nπx)/L))  b_n =(2/((1/16)))∫_0 ^(1/16) x sin(16nπx) dx  = 32 {−(x/(16nπ)) cos (16nπx)+(1/((16nπ)^2 ))sin (16nπx)}∣_0 ^(1/16)   = ((32)/(nπ))(−1)^n   then we get   f(x)= Σ_(n=1) ^∞  (((32)/(πn)))(−1)^n  sin(16nπx)   = −((32)/π)sin (16πx)+((16)/π)sin (32πx)−((32)/(3π))sin (48πx)+(8/π)sin (64πx)−...
becausef(x)anoddfunction,weusedthesineseries.periodeT=18andL=116f(x)=n=1bnsin(nπxL)bn=2(1/16)1/160xsin(16nπx)dx=32{x16nπcos(16nπx)+1(16nπ)2sin(16nπx)}1/160=32nπ(1)nthenwegetf(x)=n=1(32πn)(1)nsin(16nπx)=32πsin(16πx)+16πsin(32πx)323πsin(48πx)+8πsin(64πx)
Commented by jagoll last updated on 05/Jan/20
thanks you sir
thanksyousir

Leave a Reply

Your email address will not be published. Required fields are marked *