Question Number 78425 by arkanmath7@gmail.com last updated on 17/Jan/20
$${how}\:{to}\:{solve} \\ $$$${find}\:{inf}\:{and}\:{sup}\:{of}\:{A} \\ $$$$ \\ $$$$\mathrm{1}.\:{A}=\left\{\frac{{m}}{{n}}+\frac{\mathrm{4}{n}}{{m}}\:\:\:{m},{n}\:\in{N}\right\} \\ $$$$\mathrm{2}.\:{A}=\left\{\frac{{mn}}{\mathrm{4}{m}^{\mathrm{2}} \:+\:{n}^{\mathrm{2}} }\:\:{m}\in{Z},{n}\:\in{N}\right\} \\ $$$$\mathrm{3}.\:{A}=\left\{\frac{{m}}{\mid{m}\mid\:+\:{n}}\:\:{m}\in{Z},{n}\:\in{N}\right\} \\ $$$$ \\ $$$$ \\ $$
Answered by MJS last updated on 17/Jan/20
$$\frac{{d}}{{dm}}\left[\frac{{m}}{{n}}+\frac{\mathrm{4}{n}}{{m}}\right]=\frac{\mathrm{1}}{{n}}−\frac{\mathrm{4}{n}}{{m}^{\mathrm{2}} }=\mathrm{0}\:\Rightarrow\:{m}=\pm\mathrm{2}{n} \\ $$$$\frac{{d}^{\mathrm{2}} }{{dm}^{\mathrm{2}} }\left[\frac{{m}}{{n}}+\frac{\mathrm{4}{n}}{{m}}\right]=\frac{\mathrm{8}{n}}{{m}^{\mathrm{3}} }=\begin{cases}{−\frac{\mathrm{1}}{{n}^{\mathrm{2}} };\:{m}=−\mathrm{2}{n}}\\{\frac{\mathrm{1}}{{n}^{\mathrm{2}} };\:{m}=+\mathrm{2}{n}}\end{cases} \\ $$$$\mathrm{local}\:\mathrm{max}\:\mathrm{at}\:{m}=−\mathrm{2}{n}\:\mathrm{but}\:{m},\:{n}\:\in\mathbb{N}\:\Rightarrow\: \\ $$$$\:\:\:\:\:\Rightarrow\:{A}_{\mathrm{max}} =+\infty\:\left[{m}=\mathrm{1}\wedge{n}\rightarrow+\infty\:\mathrm{or}\:{n}=\mathrm{1}\wedge{m}\rightarrow+\infty\:\Rightarrow\:{A}\rightarrow+\infty\right] \\ $$$$\mathrm{local}\:\mathrm{min}\:\mathrm{at}\:{m}=\mathrm{2}{n}\wedge{m},\:{n}\:\in\mathbb{N}\:\Rightarrow\:{A}_{\mathrm{min}} =\mathrm{4} \\ $$
Commented by MJS last updated on 17/Jan/20
$$\mathrm{because}\:\mathrm{at}\:\mathrm{a}\:\mathrm{max}\:\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{derivate}\:\mathrm{is}\:\mathrm{smaller} \\ $$$$\mathrm{than}\:\mathrm{0} \\ $$
Commented by arkanmath7@gmail.com last updated on 17/Jan/20
$${why}\:{did}\:{you}\:{take}\:{local}\:{max}\:{at} \\ $$$${m}=−\mathrm{2}{n}\:{not}\:{at}\:{m}=\mathrm{2}{n}?? \\ $$
Commented by arkanmath7@gmail.com last updated on 17/Jan/20
$${thank}\:{you}\:{so}\:{much}\:{sir} \\ $$
Answered by MJS last updated on 17/Jan/20
$$\frac{{d}}{{dm}}\left[\frac{{mn}}{\mathrm{4}{m}^{\mathrm{2}} +{n}^{\mathrm{2}} }\right]=−\frac{{n}\left(\mathrm{4}{m}^{\mathrm{2}} −{n}^{\mathrm{2}} \right)}{\left(\mathrm{4}{m}^{\mathrm{2}} +{n}^{\mathrm{2}} \right)^{\mathrm{2}} }=\mathrm{0}\:\Rightarrow\:{m}=\pm\frac{{n}}{\mathrm{2}} \\ $$$$\frac{{d}^{\mathrm{2}} }{{dm}^{\mathrm{2}} }\left[\frac{{mn}}{\mathrm{4}{m}^{\mathrm{2}} +{n}^{\mathrm{2}} }\right]=\frac{\mathrm{8}{mn}\left(\mathrm{4}{m}^{\mathrm{2}} −\mathrm{3}{n}^{\mathrm{2}} \right)}{\left(\mathrm{4}{m}^{\mathrm{2}} +{n}^{\mathrm{2}} \right)^{\mathrm{3}} }=\begin{cases}{\frac{\mathrm{1}}{{n}^{\mathrm{2}} };\:{m}=−\frac{{n}}{\mathrm{2}}}\\{−\frac{\mathrm{1}}{{n}^{\mathrm{2}} };\:{m}=\frac{{n}}{\mathrm{2}}}\end{cases} \\ $$$$\mathrm{min}\:\mathrm{at}\:{m}=−\frac{{n}}{\mathrm{2}};\:{A}=−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{max}\:\mathrm{at}\:{m}=\frac{{n}}{\mathrm{2}};\:{A}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{try} \\ $$$$\frac{{mn}}{\mathrm{4}{m}^{\mathrm{2}} +{n}^{\mathrm{2}} }<−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{4}{mn}<−\mathrm{4}{m}^{\mathrm{2}} −{n}^{\mathrm{2}} \\ $$$$\mathrm{4}{m}^{\mathrm{2}} +\mathrm{4}{mn}+{n}^{\mathrm{2}} <\mathrm{0} \\ $$$$\left(\mathrm{2}{m}+{n}\right)^{\mathrm{2}} <\mathrm{0}\:\mathrm{false} \\ $$$$\frac{{mn}}{\mathrm{4}{m}^{\mathrm{2}} +{n}^{\mathrm{2}} }>\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{leads}\:\mathrm{to}\:\left(\mathrm{2}{m}−{n}\right)^{\mathrm{2}} <\mathrm{0}\:\Rightarrow\:\mathrm{false} \\ $$
Answered by MJS last updated on 17/Jan/20
$$−\mathrm{1}<\frac{{m}}{\mid{m}\mid+{n}}<+\mathrm{1} \\ $$