Menu Close

I-0-c-2-sin-2-d-tan-a-2-b-2-a-2-gt-b-2-c-2-gt-1-Perimeter-of-ellipse-4-0-pi-2-a-2-a-2-b-2-sin-2-d-is-that-right-sir-




Question Number 142708 by ajfour last updated on 05/Jun/21
 I=∫_0 ^(  α) (√(c^2 −sin^2 θ))dθ   tan α=(a^2 /b^2 )  , a^2 >b^2   , c^2 >1  Perimeter of ellipse  =4∫_0 ^(  π/2) (√(a^2 −(a^2 −b^2 )sin^2 θ)) dθ  (is that right sir?)
$$\:{I}=\int_{\mathrm{0}} ^{\:\:\alpha} \sqrt{{c}^{\mathrm{2}} −\mathrm{sin}\:^{\mathrm{2}} \theta}{d}\theta \\ $$$$\:\mathrm{tan}\:\alpha=\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:\:,\:{a}^{\mathrm{2}} >{b}^{\mathrm{2}} \:\:,\:{c}^{\mathrm{2}} >\mathrm{1} \\ $$$${Perimeter}\:{of}\:{ellipse} \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\:\:\pi/\mathrm{2}} \sqrt{{a}^{\mathrm{2}} −\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\mathrm{sin}\:^{\mathrm{2}} \theta}\:{d}\theta \\ $$$$\left({is}\:{that}\:{right}\:{sir}?\right) \\ $$
Answered by MJS_new last updated on 04/Jun/21
∫(√(c^2 −sin^2  θ)) dθ=c∫(√(1−c^(−2) sin^2  θ)) dθ=  =cE (θ∣c^(−2) ) +C
$$\int\sqrt{{c}^{\mathrm{2}} −\mathrm{sin}^{\mathrm{2}} \:\theta}\:{d}\theta={c}\int\sqrt{\mathrm{1}−{c}^{−\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}\:{d}\theta= \\ $$$$={c}\mathrm{E}\:\left(\theta\mid{c}^{−\mathrm{2}} \right)\:+{C} \\ $$
Commented by ajfour last updated on 05/Jun/21
whats the name?
$${whats}\:{the}\:{name}? \\ $$
Commented by MJS_new last updated on 05/Jun/21
Incomplete Elliptic Integral of the 2^(nd)  Kind
$$\mathrm{Incomplete}\:\mathrm{Elliptic}\:\mathrm{Integral}\:\mathrm{of}\:\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{Kind} \\ $$
Commented by mohammad17 last updated on 05/Jun/21
sir can you give me the formola
$${sir}\:{can}\:{you}\:{give}\:{me}\:{the}\:{formola} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *