Menu Close

I-0-ln-1-x-1-x-dx-




Question Number 70602 by oyemi kemewari last updated on 06/Oct/19
I=∫_0 ^∞ ln((√(1−x)) +(√(1+x)))dx
$$\mathrm{I}=\int_{\mathrm{0}} ^{\infty} \mathrm{ln}\left(\sqrt{\mathrm{1}−\mathrm{x}}\:+\sqrt{\mathrm{1}+\mathrm{x}}\right)\mathrm{dx} \\ $$
Commented by mathmax by abdo last updated on 06/Oct/19
error in the question the function x→(√(1−x))+(√(1+x)) is defined on  [−1,1]....!
$${error}\:{in}\:{the}\:{question}\:{the}\:{function}\:{x}\rightarrow\sqrt{\mathrm{1}−{x}}+\sqrt{\mathrm{1}+{x}}\:{is}\:{defined}\:{on} \\ $$$$\left[−\mathrm{1},\mathrm{1}\right]….! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *