Menu Close

I-0-pi-x-pi-x-sin-x-dx-




Question Number 1085 by 123456 last updated on 10/Jun/15
I=∫_0 ^π ((x(π−x))/(sin x))dx
I=π0x(πx)sinxdx
Commented by 123456 last updated on 10/Jun/15
f(x)=((x(π−x))/(sin x))  f(0^+ )=^? π  f(π^− )=^? π  ∃ξ∈(0,π),∀x∈(0,π),f(ξ)≥f(x)  ∃ζ∈(0,π),∀x∈(0,π),f(ζ)≤f(x)  πf(ζ)≤^? ∫_0 ^π f(x)dx≤^? πf(ξ)
f(x)=x(πx)sinxf(0+)=?πf(π)=?πξ(0,π),x(0,π),f(ξ)f(x)ζ(0,π),x(0,π),f(ζ)f(x)πf(ζ)?π0f(x)dx?πf(ξ)
Commented by 123456 last updated on 10/Jun/15
f((π/2))=^? (π^2 /(2(√2)))  π^2 <^? ∫_0 ^π f(x)dx<^? (π^3 /(2(√2)))
f(π2)=?π222π2<?π0f(x)dx<?π322
Commented by prakash jain last updated on 10/Jun/15
lim_(x→0) ((x(π−x))/(sin x))=π  lim_(x→π) ((x(π−x))/(sin x))=π
limx0x(πx)sinx=πlimxπx(πx)sinx=π

Leave a Reply

Your email address will not be published. Required fields are marked *