Menu Close

I-0-x-a-2-b-2-x-2a-2-x-2-2b-2-dx-a-2-x-2-b-2-2-a-2-b-2-x-a-2-x-2-b-2-




Question Number 141244 by ajfour last updated on 17/May/21
I=∫_0 ^( ∞) ((x{(a^2 −b^2 )x−2a^2 x^2 −2b^2 }dx)/((a^2 x^2 +b^2 )^2 {(a^2 −b^2 )x+a^2 x^2 +b^2 }))
$${I}=\int_{\mathrm{0}} ^{\:\infty} \frac{{x}\left\{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){x}−\mathrm{2}{a}^{\mathrm{2}} {x}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} \right\}{dx}}{\left({a}^{\mathrm{2}} {x}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)^{\mathrm{2}} \left\{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){x}+{a}^{\mathrm{2}} {x}^{\mathrm{2}} +{b}^{\mathrm{2}} \right\}} \\ $$
Commented by ajfour last updated on 17/May/21
this will get me perimeter of ellipse!
Answered by MJS_new last updated on 17/May/21
I_1 =∫(x/((a^2 x^2 +b^2 )^2 ))dx=−(1/(2a^2 (a^2 x^2 +b^2 )))  I_2 =−(3/(a^2 −b^2 ))∫(dx/(a^2 x^2 +b^2 ))=−((3arctan ((ax)/b))/(a(a^2 −b^2 )b))    I_3 =(3/(a^2 −b^2 ))∫(dx/(a^2 x^2 +(a^2 −b^2 )x+b^2 ))=  =(3/((a^2 −b^2 )(√(a^4 −6a^2 b^2 +b^4 ))))ln ((2a^2 x^2 +a^2 −b^2 −(√(a^4 −6a^2 b^2 +b^4 )))/(2a^2 x^2 +a^2 −b^2 +(√(a^4 −6a^2 b^2 +b^4 ))))  now calculate within the borders
$${I}_{\mathrm{1}} =\int\frac{{x}}{\left({a}^{\mathrm{2}} {x}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx}=−\frac{\mathrm{1}}{\mathrm{2}{a}^{\mathrm{2}} \left({a}^{\mathrm{2}} {x}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)} \\ $$$${I}_{\mathrm{2}} =−\frac{\mathrm{3}}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\int\frac{{dx}}{{a}^{\mathrm{2}} {x}^{\mathrm{2}} +{b}^{\mathrm{2}} }=−\frac{\mathrm{3arctan}\:\frac{{ax}}{{b}}}{{a}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){b}} \\ $$$$ \\ $$$${I}_{\mathrm{3}} =\frac{\mathrm{3}}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\int\frac{{dx}}{{a}^{\mathrm{2}} {x}^{\mathrm{2}} +\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){x}+{b}^{\mathrm{2}} }= \\ $$$$=\frac{\mathrm{3}}{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\sqrt{{a}^{\mathrm{4}} −\mathrm{6}{a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{4}} }}\mathrm{ln}\:\frac{\mathrm{2}{a}^{\mathrm{2}} {x}^{\mathrm{2}} +{a}^{\mathrm{2}} −{b}^{\mathrm{2}} −\sqrt{{a}^{\mathrm{4}} −\mathrm{6}{a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{4}} }}{\mathrm{2}{a}^{\mathrm{2}} {x}^{\mathrm{2}} +{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +\sqrt{{a}^{\mathrm{4}} −\mathrm{6}{a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{4}} }} \\ $$$$\mathrm{now}\:\mathrm{calculate}\:\mathrm{within}\:\mathrm{the}\:\mathrm{borders} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *