Menu Close

I-0-x-a-2-b-2-x-2a-2-x-2-2b-2-dx-a-2-x-2-b-2-2-a-2-b-2-x-a-2-x-2-b-2-




Question Number 141244 by ajfour last updated on 17/May/21
I=∫_0 ^( ∞) ((x{(a^2 −b^2 )x−2a^2 x^2 −2b^2 }dx)/((a^2 x^2 +b^2 )^2 {(a^2 −b^2 )x+a^2 x^2 +b^2 }))
I=0x{(a2b2)x2a2x22b2}dx(a2x2+b2)2{(a2b2)x+a2x2+b2}
Commented by ajfour last updated on 17/May/21
this will get me perimeter of ellipse!
Answered by MJS_new last updated on 17/May/21
I_1 =∫(x/((a^2 x^2 +b^2 )^2 ))dx=−(1/(2a^2 (a^2 x^2 +b^2 )))  I_2 =−(3/(a^2 −b^2 ))∫(dx/(a^2 x^2 +b^2 ))=−((3arctan ((ax)/b))/(a(a^2 −b^2 )b))    I_3 =(3/(a^2 −b^2 ))∫(dx/(a^2 x^2 +(a^2 −b^2 )x+b^2 ))=  =(3/((a^2 −b^2 )(√(a^4 −6a^2 b^2 +b^4 ))))ln ((2a^2 x^2 +a^2 −b^2 −(√(a^4 −6a^2 b^2 +b^4 )))/(2a^2 x^2 +a^2 −b^2 +(√(a^4 −6a^2 b^2 +b^4 ))))  now calculate within the borders
I1=x(a2x2+b2)2dx=12a2(a2x2+b2)I2=3a2b2dxa2x2+b2=3arctanaxba(a2b2)bI3=3a2b2dxa2x2+(a2b2)x+b2==3(a2b2)a46a2b2+b4ln2a2x2+a2b2a46a2b2+b42a2x2+a2b2+a46a2b2+b4nowcalculatewithintheborders

Leave a Reply

Your email address will not be published. Required fields are marked *