Menu Close

I-0-x-n-1-x-1-x-n-3-1-dx-




Question Number 141133 by mnjuly1970 last updated on 16/May/21
            I:=∫_0 ^( ∞) (((x^n −1)(x−1))/(x^(n+3) −1))dx=??
I:=0(xn1)(x1)xn+31dx=??
Answered by mathmax by abdo last updated on 17/May/21
at form of series Ψ=∫_0 ^1  ((x^(n+1) −x^n −x+1)/(x^(n+3) −1))dx +∫_1 ^∞  ((x^(n+1) −x^n  −x+1)/(x^(n+3) −1))dx  =Ψ_1 +Ψ_2   Ψ_1 =−∫_0 ^1  (x^(n+1) −x^n −x+1)Σ_(k=0) ^∞  x^(k(n+3))   =−Σ_(k=0) ^∞ ∫_0 ^1  (x^(n+1 +k(n+3)) −x^(k(n+3)+n)  +x^(k(n+3)) dx  =−Σ_(k=0) ^∞ [(1/(n+2+(n+3)k))x^(n+2+(n+3)k) −(1/(n+1+(n+3)k))x^(n+1+(n+3)k)  +(1/(1+(n+3)k))x^(1+(n+3)k) ]_0 ^1   =−Σ_(k=0) ^∞  ((1/(n+2+(n+3)k))−(1/(n+1+(n+3)k))+(1/(1+(n+3)k)))  Ψ_2 =_(x=(1/t))    −∫_0 ^1  (((1/t^(n+1) )−(1/t^n )−(1/t)+1)/((1/t^(n+3) )−1))×(−(dt/t^2 ))  =∫_0 ^1 t^(n+1) ((((1/t^(n+1) )−(1/t^n )−(1/t)+1)/(1−t^(n+3) )))dt  =∫_0 ^1  ((1−t−t^n +t^(n+1) )/(1−t^(n+3) ))dt =∫_0 ^1  ((−t^(n+1) +t^n  +t−1)/(t^(n+3) −1))dt ⇒  Ψ_1 +Ψ_2 =∫_0 ^1  ((x^(n+1) −x^n −x+1−x^(n+1) +x^n +x−1)/(x^(n+3) −1))dx  =0 ⇒Ψ=0  !
atformofseriesΨ=01xn+1xnx+1xn+31dx+1xn+1xnx+1xn+31dx=Ψ1+Ψ2Ψ1=01(xn+1xnx+1)k=0xk(n+3)=k=001(xn+1+k(n+3)xk(n+3)+n+xk(n+3)dx=k=0[1n+2+(n+3)kxn+2+(n+3)k1n+1+(n+3)kxn+1+(n+3)k+11+(n+3)kx1+(n+3)k]01=k=0(1n+2+(n+3)k1n+1+(n+3)k+11+(n+3)k)Ψ2=x=1t011tn+11tn1t+11tn+31×(dtt2)=01tn+1(1tn+11tn1t+11tn+3)dt=011ttn+tn+11tn+3dt=01tn+1+tn+t1tn+31dtΨ1+Ψ2=01xn+1xnx+1xn+1+xn+x1xn+31dx=0Ψ=0!

Leave a Reply

Your email address will not be published. Required fields are marked *