Menu Close

I-asked-this-question-a-while-ago-but-I-forgot-how-to-solve-it-S-0-n-x-dx-




Question Number 3900 by Filup last updated on 24/Dec/15
I asked this question a while ago,  but I forgot how to solve it:    S=∫_0 ^( n) ⌊x⌋dx
Iaskedthisquestionawhileago,butIforgothowtosolveit:S=0nxdx
Answered by Yozzii last updated on 24/Dec/15
0≤x<1⇒⌊x⌋=0⇒A_1 =0×(1−0)=0  1≤x<2⇒⌊x⌋=1⇒A_2 =1(2−1)=1  2≤x<3⇒⌊x⌋=2⇒A_3 =2(3−2)=2  3≤x<4⇒⌊x⌋=3⇒A_4 =3(4−3)=3  ⋮  n−2≤x<n−1⇒⌊x⌋=n−2⇒A_(n−1) =n−2  n−1≤x<n⇒⌊x⌋=n−1⇒A_n =n−1  S=∫_0 ^n ⌊x⌋dx  By the geometrical interpretation of  the integral,  S=Σ_(i=1) ^n A_i =0+1+2+3+...+n−1=((n(n−1))/2).    Alternatively, for i∈N,  S=Σ_(i=1) ^n {∫_(i−1) ^i ⌊x⌋dx}  S=Σ_(i=1) ^n {∫_(i−1) ^i (i−1)dx}      (i−1≤x<i⇒⌊x⌋=i−1)  S=Σ_(i=1) ^n (i−1)(x∣_(i−1) ^i )  S=Σ_(i=1) ^n (i−1)(i−i+1)  S=Σ_(i=1) ^n (i−1)=((n(n+1))/2)−n=((n(n−1))/2)
0x<1x=0A1=0×(10)=01x<2x=1A2=1(21)=12x<3x=2A3=2(32)=23x<4x=3A4=3(43)=3n2x<n1x=n2An1=n2n1x<nx=n1An=n1S=0nxdxBythegeometricalinterpretationoftheintegral,S=ni=1Ai=0+1+2+3++n1=n(n1)2.Alternatively,foriN,S=ni=1{i1ixdx}S=ni=1{i1i(i1)dx}(i1x<ix=i1)S=ni=1(i1)(xi1i)S=ni=1(i1)(ii+1)S=ni=1(i1)=n(n+1)2n=n(n1)2

Leave a Reply

Your email address will not be published. Required fields are marked *