Menu Close

I-don-t-know-the-value-of-Log-1-but-I-calculate-it-in-the-following-way-1-2-1-Log-1-2-Log-1-2-Log-1-0-Log-1-0-2-0-Am-I-correct-If-no-why-




Question Number 3239 by Rasheed Soomro last updated on 08/Dec/15
I don′t know the value of  Log(−1) but I calculate  it in the following way :            (−1)^2 =1       ⇒  Log(−1)^2 =Log(1)       ⇒  2×Log(−1)=0       ⇒ Log(−1)=(0/2)=0  Am I correct? If no,why?
IdontknowthevalueofLog(1)butIcalculateitinthefollowingway:(1)2=1Log(1)2=Log(1)2×Log(1)=0Log(1)=02=0AmIcorrect?Ifno,why?
Commented by prakash jain last updated on 08/Dec/15
y=e^x ⇒x=ln y  e^(ix) =−1⇒cos x+isin x=−1  x=(2n+1)π  ln (−1)=i(2n+1)π
y=exx=lnyeix=1cosx+isinx=1x=(2n+1)πln(1)=i(2n+1)π
Commented by prakash jain last updated on 08/Dec/15
a^2 =b^2 ⇏a=b
a2=b2a=b
Commented by Rasheed Soomro last updated on 08/Dec/15
But we have not extracted square root of both sides .
Butwehavenotextractedsquarerootofbothsides.
Commented by prakash jain last updated on 08/Dec/15
a=b  ln ((√a))^2 =ln b  2ln (√a)=ln b  ln (√a)=(1/2)ln b=ln (√b)  a=b=1  LHS=(√a)=−1  RHS=(√b)=1
a=bln(a)2=lnb2lna=lnblna=12lnb=lnba=b=1LHS=a=1RHS=b=1
Commented by Rasheed Soomro last updated on 08/Dec/15
Ok Sir!
OkSir!
Commented by prakash jain last updated on 09/Dec/15
ln1=2nπi  ln(−1)=(2m+1)iπ  2ln(−1)=2(2m+1)iπ=2nπ  This is correct result.
ln1=2nπiln(1)=(2m+1)iπ2ln(1)=2(2m+1)iπ=2nπThisiscorrectresult.
Commented by 123456 last updated on 08/Dec/15
e^(2πı) =e^0  but 2πı≠0
e2πı=e0but2πı0
Commented by 123456 last updated on 08/Dec/15
e^x =e^y ⇔x=y work only for (x,y)∈R^2   at complex plane e^z  dont is one to one  in fact  e^(z+2πnı) =e^z       n∈Z
ex=eyx=yworkonlyfor(x,y)R2atcomplexplaneezdontisonetooneinfactez+2πnı=eznZ
Commented by Rasheed Soomro last updated on 08/Dec/15
THanK^S S_(S!) !^!
THanKSSS!!!
Commented by 123456 last updated on 09/Dec/15
just random comment  ln1=2πnı  2ln(−1)=2(πı+mπı)=2π(1+m)ı  ln(−1)^2 =2ln(−1)  n=1+m  lnz=ln∣z∣+ı[arg(z)+2πk]
justrandomcommentln1=2πnı2ln(1)=2(πı+mπı)=2π(1+m)ıln(1)2=2ln(1)n=1+mlnz=lnz+ı[arg(z)+2πk]

Leave a Reply

Your email address will not be published. Required fields are marked *