Question Number 142457 by ajfour last updated on 01/Jun/21
$$\:{I}=\int\frac{{dx}}{\:\sqrt{{a}^{\mathrm{2}} −\left({x}+\frac{\mathrm{1}}{{x}}\right)}} \\ $$
Answered by MJS_new last updated on 01/Jun/21
$$\mathrm{I}'\mathrm{m}\:\mathrm{afraid}\:\mathrm{you}'\mathrm{re}\:\mathrm{ending}\:\mathrm{on}\:\mathrm{elliptic}\:\mathrm{functions} \\ $$$$\mathrm{again}. \\ $$$$\mathrm{my}\:\mathrm{try}: \\ $$$$\int\frac{{dx}}{\:\sqrt{{a}^{\mathrm{2}} −\left({x}+\frac{\mathrm{1}}{{x}}\right)}}= \\ $$$$\:\:\:\:\:\left[{t}={x}+\frac{\mathrm{1}}{{x}}\:\rightarrow\:{dx}=\frac{{t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}}{\:\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}}{\:\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}\sqrt{{a}^{\mathrm{2}} −{t}}}{dt}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\:\sqrt{{a}^{\mathrm{2}} −{t}}}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{t}}{\:\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}\sqrt{{a}^{\mathrm{2}} −{t}}}{dt}= \\ $$$$=−\sqrt{{a}^{\mathrm{2}} −{t}}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{t}}{\:\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}\sqrt{{a}^{\mathrm{2}} −{t}}}{dt} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{t}}{\:\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}\sqrt{{a}^{\mathrm{2}} −{t}}}{dt}= \\ $$$$\:\:\:\:\:\left[{u}=\frac{\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}}{\:\sqrt{{a}^{\mathrm{2}} −{t}}}\:\rightarrow\:{dt}=−\frac{\mathrm{2}\sqrt{{t}^{\mathrm{2}} −\mathrm{4}}\sqrt{\left({a}^{\mathrm{2}} −{t}\right)^{\mathrm{3}} }}{{t}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} {t}+\mathrm{4}}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int{du}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{u}^{\mathrm{2}} }{\:\sqrt{{u}^{\mathrm{4}} +\mathrm{4}{a}^{\mathrm{2}} {u}^{\mathrm{2}} +\mathrm{16}}}{du}= \\ $$$$=\frac{{u}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{u}^{\mathrm{2}} }{\:\sqrt{{u}^{\mathrm{4}} +\mathrm{4}{a}^{\mathrm{2}} {u}^{\mathrm{2}} +\mathrm{16}}}{du} \\ $$$$\mathrm{and}\:\mathrm{we}\:\mathrm{cannot}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{remaining}\:\mathrm{integral} \\ $$$$\mathrm{using}\:\mathrm{elementary}\:\mathrm{calculus} \\ $$
Commented by ajfour last updated on 01/Jun/21
$${I}=\int\frac{{u}^{\mathrm{2}} {du}}{\:\sqrt{\left({u}^{\mathrm{2}} +\mathrm{2}{a}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}\left({a}^{\mathrm{4}} −\mathrm{4}\right)}} \\ $$$${I}=\int\frac{{du}}{\:\sqrt{\left(\mathrm{1}+\frac{\mathrm{2}{a}^{\mathrm{2}} }{{u}^{\mathrm{2}} }\right)^{\mathrm{2}} −\left(\frac{{s}}{{u}^{\mathrm{2}} }\right)^{\mathrm{2}} }} \\ $$$${let}\:\:\:\:\frac{\mathrm{2}{a}^{\mathrm{2}} }{{u}^{\mathrm{2}} }=\mathrm{cos}\:\mathrm{2}\theta \\ $$$${u}^{\mathrm{2}} =\mathrm{2}{a}^{\mathrm{2}} \mathrm{sec}\:\mathrm{2}\theta \\ $$$$\mathrm{2}{udu}=\mathrm{4}{a}^{\mathrm{2}} \mathrm{sec}\:\mathrm{2}\theta\sqrt{\mathrm{sec}\:^{\mathrm{2}} \mathrm{2}\theta−\mathrm{1}}{d}\theta \\ $$$${du}=\sqrt{\mathrm{2}}{a}\mathrm{sec}\:\mathrm{2}\theta\sqrt{\mathrm{sec}\:\mathrm{2}\theta−\mathrm{cos}\:\mathrm{2}\theta} \\ $$$${I}=\int\frac{\sqrt{\mathrm{2}}{a}\mathrm{sec}\:\mathrm{2}\theta\sqrt{\mathrm{sec}\:\mathrm{2}\theta−\mathrm{cos}\:\mathrm{2}\theta}{d}\theta}{\:\sqrt{\mathrm{4cos}\:^{\mathrm{4}} \theta−\frac{{s}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{4}} }\mathrm{cos}\:^{\mathrm{2}} \mathrm{2}\theta}} \\ $$$${I}=\int\frac{\sqrt{\mathrm{2}}{a}\mathrm{sin}\:\mathrm{2}\theta{d}\theta}{\:\sqrt{\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta\right)^{\mathrm{2}} \mathrm{cos}\:\mathrm{2}\theta−\frac{{s}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{4}} }\mathrm{cos}\:^{\mathrm{3}} \mathrm{2}\theta}} \\ $$$${I}=−\frac{{a}}{\:\sqrt{\mathrm{2}}}\int\frac{{dz}}{\:\sqrt{{z}\left(\mathrm{1}+{z}\right)^{\mathrm{2}} −{m}^{\mathrm{2}} {z}^{\mathrm{3}} }} \\ $$$$… \\ $$