Menu Close

I-have-a-loop-of-string-of-length-perimeter-p-units-I-want-to-make-a-triangle-of-largest-area-from-the-loop-What-will-be-the-dimensions-of-that-triangle-




Question Number 1592 by Rasheed Soomro last updated on 23/Aug/15
I have a loop of string of length(perimeter)  p units.   I want to make a triangle of largest area from the  loop. What will be the dimensions of that triangle?
$$\mathrm{I}\:\mathrm{have}\:\mathrm{a}\:\mathrm{loop}\:\mathrm{of}\:\mathrm{string}\:\mathrm{of}\:\mathrm{length}\left(\mathrm{perimeter}\right)\:\:\mathrm{p}\:\mathrm{units}.\: \\ $$$$\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{make}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{of}\:\mathrm{largest}\:\mathrm{area}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{loop}.\:\mathrm{What}\:\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{dimensions}\:\mathrm{of}\:\mathrm{that}\:\mathrm{triangle}? \\ $$
Commented by 123456 last updated on 23/Aug/15
x+y+z=p  s=p/2   { ((∣x−y∣≤z≤x+y)),((∣x−z∣≤y≤x+z)),((∣y−z∣≤x≤y+z)) :}  S(x,y,z)=(√(s(s−x)(s−y)(s−z)))
$${x}+{y}+{z}={p} \\ $$$${s}={p}/\mathrm{2} \\ $$$$\begin{cases}{\mid{x}−{y}\mid\leqslant{z}\leqslant{x}+{y}}\\{\mid{x}−{z}\mid\leqslant{y}\leqslant{x}+{z}}\\{\mid{y}−{z}\mid\leqslant{x}\leqslant{y}+{z}}\end{cases} \\ $$$$\mathrm{S}\left({x},{y},{z}\right)=\sqrt{{s}\left({s}−{x}\right)\left({s}−{y}\right)\left({s}−{z}\right)} \\ $$
Answered by prakash jain last updated on 10/Dec/15
x=y=z=(p/3)  among all triangle of same perimeter  equilateral triangle has largest area.
$${x}={y}={z}=\frac{{p}}{\mathrm{3}} \\ $$$$\mathrm{among}\:\mathrm{all}\:\mathrm{triangle}\:\mathrm{of}\:\mathrm{same}\:\mathrm{perimeter} \\ $$$$\mathrm{equilateral}\:\mathrm{triangle}\:\mathrm{has}\:\mathrm{largest}\:\mathrm{area}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *