Menu Close

I-n-0-1-x-n-x-2-1-dx-find-reduction-formula-




Question Number 138209 by 676597498 last updated on 11/Apr/21
I_n =∫_0 ^( 1) x^n (√(x^2 +1))dx  find reduction formula
In=01xnx2+1dxfindreductionformula
Commented by Dwaipayan Shikari last updated on 11/Apr/21
(√(x^2 +1))=Σ_(k=0) ^∞ (((−(1/2))_k )/(k!))(−x^2 )^k   =∫_0 ^1 x^n (√(x^2 +1)) dx=Σ_(k=0) ^∞ ∫_0 ^1 (((−(1/2))_k )/(k!))(−1)^k x^(2k+n) dx  =Σ_(k=0) ^∞ (((−(1/2))_k )/(k!(2k+n+1)))(−1)^k =(1/2)Σ_(k=0) ^∞ (((−(1/2))_k )/(k!(k+((n+1)/2))))(−1)^k   =(1/2)Σ_(k=0) ^∞ (((−(1/2))_k Γ(k+((n+1)/2)))/(k!Γ(k+((n+3)/2))))(−1)^k =((Γ(((n+1)/2)))/(2Γ(((n+3)/2))))Σ_(k=0) ^∞ (((−(1/2))_k (((n+1)/2))_k )/((((n+3)/2))_k ))(−1)^k   =(1/(n+1)) _2 F_1 (−(1/2),((n+1)/2);((n+3)/2);−1)  Example when  n=0   _2 F_1 (−(1/2),(1/2);(3/2);−1)=((Γ((3/2)))/(Γ((1/2))Γ(1)))∫_0 ^1 x^(−(1/2))  (1−x)^((3/2)−(1/2)−1) (1+x)^(1/2) dx  =(1/2)∫_0 ^1 x^(−(1/2)) (1+x)^(1/2) dx=∫_0 ^1 (√(1+x^2 )) dx=((2(√2))/3)
x2+1=k=0(12)kk!(x2)k=01xnx2+1dx=k=001(12)kk!(1)kx2k+ndx=k=0(12)kk!(2k+n+1)(1)k=12k=0(12)kk!(k+n+12)(1)k=12k=0(12)kΓ(k+n+12)k!Γ(k+n+32)(1)k=Γ(n+12)2Γ(n+32)k=0(12)k(n+12)k(n+32)k(1)k=1n+12F1(12,n+12;n+32;1)Examplewhenn=02F1(12,12;32;1)=Γ(32)Γ(12)Γ(1)01x12(1x)32121(1+x)12dx=1201x12(1+x)12dx=011+x2dx=223
Answered by physicstutes last updated on 11/Apr/21
I_n = ∫_0 ^1 x^n (√(x^2 +1)) dx  I_n  = ∫_0 ^1 x^(n−1) x(√(x^2 +1)) dx  let u = x^(n−1)  and dv = x(√(x^2 +1)) dx  ⇒ du = (n−1)x^(n−2)  dx  and v = (1/2)((2/3))(x^2 +1)^(3/2)   ∴  I_n  = [(x^(n−1) /3)(x^2 +1)^(3/2) ]_0 ^1 −(((n−1))/3)∫_0 ^1 x^(n−2) (x^2 +1)(√(x^2 +1)) dx   I_n  = (2^(3/2) /3) −(((n−1))/3)[∫_0 ^1 x^n (√(x^2 +1)) dx + ∫_0 ^1 x^(n−2) (√(x^2 +1)) dx]   I_n  = ((2(√2))/3)−(((n−1))/3)I_n −(((n−1))/3)I_(n−2)   ⇒ I_n (((n+2)/3)) = ((2(√2))/3)−(((n−1))/3)I_(n−2)   hence I_n  = ((2(√2)−(n−1)I_(n−2) )/((n+2))), n ≥ 2
In=01xnx2+1dxIn=01xn1xx2+1dxletu=xn1anddv=xx2+1dxdu=(n1)xn2dxandv=12(23)(x2+1)3/2In=[xn13(x2+1)32]01(n1)301xn2(x2+1)x2+1dxIn=23/23(n1)3[01xnx2+1dx+01xn2x2+1dx]In=223(n1)3In(n1)3In2In(n+23)=223(n1)3In2henceIn=22(n1)In2(n+2),n2
Answered by mathmax by abdo last updated on 12/Apr/21
I_n =∫_0 ^1  x^n (√(1+x^2 ))dx  changement x=sht give  I_n =∫_0 ^(argsh(1)) sh^n t  ch(t)ch(t)dt  =∫_0 ^(ln(1+(√2))) sh^n t cht(cht)  dt  (u^′  =cht sh^n t  and v=cht)  =[(1/(n+1))sh^(n+1) t cht]_0 ^(ln(1+(√2))) −(1/(n+1))∫_0 ^(ln(1+(√2))) sh^(n+2) t dt  =(1/(n+1)){  ((e^t +e^(−t) )/2)(((e^t −e^(−t) )/2))^(n+1) ]_0 ^(ln(1+(√2))) −J_n   =(1/(n+1)2^(n+2) )){(1+(√2)+(1+(√2))^(−1) )(1+(√2)−(1+(√2))^(−1) )^(n+1) } −J_n   (n+1)J_n =∫_0 ^(ln(1+(√2))) (((e^t −e^(−t) )/2))^(n+2)  dt  =(1/2^(n+2) )∫_0 ^(ln(1+(√2))) Σ_(k=0) ^(n+2)  C_k ^(n+2)  (e^t )^k (−e^(−t) )^(n+2−k)  dt  =(1/2^(n+2) )Σ_(k=0) ^(n+2)  C_(n+2) ^k (−1)^(n+2−k)  ∫_0 ^(ln(1+(√2)))  e^(kt)   .e^(−(n+2−k)t)  dt  =(1/2^(n+2) )Σ_(k=0) ^(n+2)  C_(n+2) ^k  (−1)^(n−k)  ∫_0 ^(ln(1+(√2)))  e^((2k−n−2)t)  dt  and ∫_0 ^(ln(1+(√2)))  e^((2k−n−2)t)  =[(1/(2k−n−2))e^((2k−n−2)t) ]_0 ^(ln(1+(√2)))   =(1/(2k−n−2))((1+(√2))^(2k−n−2) −1) ⇒  J_n =(1/((n+1)2^(n+2) ))Σ_(k=0) ^(n+2)  (−1)^(n−k)  C_(n+2) ^k  .(1/(2k−n−2)){ (1+(√2))^(2k−n−2) −1}  so the value of I_n  is known...
In=01xn1+x2dxchangementx=shtgiveIn=0argsh(1)shntch(t)ch(t)dt=0ln(1+2)shntcht(cht)dt(u=chtshntandv=cht)=[1n+1shn+1tcht]0ln(1+2)1n+10ln(1+2)shn+2tdt=1n+1{et+et2(etet2)n+1]0ln(1+2)Jn=1n+1)2n+2{(1+2+(1+2)1)(1+2(1+2)1)n+1}Jn(n+1)Jn=0ln(1+2)(etet2)n+2dt=12n+20ln(1+2)k=0n+2Ckn+2(et)k(et)n+2kdt=12n+2k=0n+2Cn+2k(1)n+2k0ln(1+2)ekt.e(n+2k)tdt=12n+2k=0n+2Cn+2k(1)nk0ln(1+2)e(2kn2)tdtand0ln(1+2)e(2kn2)t=[12kn2e(2kn2)t]0ln(1+2)=12kn2((1+2)2kn21)Jn=1(n+1)2n+2k=0n+2(1)nkCn+2k.12kn2{(1+2)2kn21}sothevalueofInisknown

Leave a Reply

Your email address will not be published. Required fields are marked *