I-n-0-1-x-n-x-2-1-dx-find-reduction-formula- Tinku Tara June 3, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 138209 by 676597498 last updated on 11/Apr/21 In=∫01xnx2+1dxfindreductionformula Commented by Dwaipayan Shikari last updated on 11/Apr/21 x2+1=∑∞k=0(−12)kk!(−x2)k=∫01xnx2+1dx=∑∞k=0∫01(−12)kk!(−1)kx2k+ndx=∑∞k=0(−12)kk!(2k+n+1)(−1)k=12∑∞k=0(−12)kk!(k+n+12)(−1)k=12∑∞k=0(−12)kΓ(k+n+12)k!Γ(k+n+32)(−1)k=Γ(n+12)2Γ(n+32)∑∞k=0(−12)k(n+12)k(n+32)k(−1)k=1n+12F1(−12,n+12;n+32;−1)Examplewhenn=02F1(−12,12;32;−1)=Γ(32)Γ(12)Γ(1)∫01x−12(1−x)32−12−1(1+x)12dx=12∫01x−12(1+x)12dx=∫011+x2dx=223 Answered by physicstutes last updated on 11/Apr/21 In=∫01xnx2+1dxIn=∫01xn−1xx2+1dxletu=xn−1anddv=xx2+1dx⇒du=(n−1)xn−2dxandv=12(23)(x2+1)3/2∴In=[xn−13(x2+1)32]01−(n−1)3∫01xn−2(x2+1)x2+1dxIn=23/23−(n−1)3[∫01xnx2+1dx+∫01xn−2x2+1dx]In=223−(n−1)3In−(n−1)3In−2⇒In(n+23)=223−(n−1)3In−2henceIn=22−(n−1)In−2(n+2),n⩾2 Answered by mathmax by abdo last updated on 12/Apr/21 In=∫01xn1+x2dxchangementx=shtgiveIn=∫0argsh(1)shntch(t)ch(t)dt=∫0ln(1+2)shntcht(cht)dt(u′=chtshntandv=cht)=[1n+1shn+1tcht]0ln(1+2)−1n+1∫0ln(1+2)shn+2tdt=1n+1{et+e−t2(et−e−t2)n+1]0ln(1+2)−Jn=1n+1)2n+2{(1+2+(1+2)−1)(1+2−(1+2)−1)n+1}−Jn(n+1)Jn=∫0ln(1+2)(et−e−t2)n+2dt=12n+2∫0ln(1+2)∑k=0n+2Ckn+2(et)k(−e−t)n+2−kdt=12n+2∑k=0n+2Cn+2k(−1)n+2−k∫0ln(1+2)ekt.e−(n+2−k)tdt=12n+2∑k=0n+2Cn+2k(−1)n−k∫0ln(1+2)e(2k−n−2)tdtand∫0ln(1+2)e(2k−n−2)t=[12k−n−2e(2k−n−2)t]0ln(1+2)=12k−n−2((1+2)2k−n−2−1)⇒Jn=1(n+1)2n+2∑k=0n+2(−1)n−kCn+2k.12k−n−2{(1+2)2k−n−2−1}sothevalueofInisknown… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-7139Next Next post: Question-7145 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.