Menu Close

I-n-0-pi-2-sin-n-x-dx-Write-a-relation-between-I-n-2-and-I-n-




Question Number 137187 by mathocean1 last updated on 30/Mar/21
I_n =∫_0 ^(π/2) sin^n x dx  Write a relation between I_(n+2)  and I_n .
In=0π2sinnxdxWritearelationbetweenIn+2andIn.
Answered by Dwaipayan Shikari last updated on 30/Mar/21
∫_0 ^(π/2) sin^n x dx=∫_0 ^(π/2) sin^(2(((n+1)/2))−1) (x)cos^(2((1/2))−1) (x)dx  =((Γ(((n+1)/2))Γ((1/2)))/(2Γ((n/2)+1)))=J_n   J_(n+2) =((Γ(((n+3)/2))Γ((1/2)))/(2Γ((n/2)+2)))=(((((n+1)/2)))/(((n/2)+1)))J_n
0π2sinnxdx=0π2sin2(n+12)1(x)cos2(12)1(x)dx=Γ(n+12)Γ(12)2Γ(n2+1)=JnJn+2=Γ(n+32)Γ(12)2Γ(n2+2)=(n+12)(n2+1)Jn
Answered by mathmax by abdo last updated on 30/Mar/21
I_(n+2) =∫_0 ^(π/2)  sin^n x sin^2  xdx =∫_0 ^(π/2)  sin^n x(1−cos^2 x)dx  =∫_0 ^(π/2)  sin^n xdx −∫_0 ^(π/2)  cos^2 x sin^n x dx=I_n −J  J =∫_0 ^(π/2)  cosx(cosx sin^n x)dx =_(by parts)   [((sin^(n+1) x)/(n+1))cosx]_0 ^(π/2) −∫_0 ^(π/2) (−sinx)((sin^(n+1) x)/(n+1))dx  =(1/(n+1))∫_0 ^(π/2)  sin^(n+2) xdx ⇒I_(n+2 ) =I_n −(1/(n+1))I_(n+2)  ⇒  (1+(1/(n+1)))I_(n+2) =I_n  ⇒((n+2)/(n+1))I_(n+2) =I_n  ⇒I_(n+2) =((n+1)/(n+2))I_n
In+2=0π2sinnxsin2xdx=0π2sinnx(1cos2x)dx=0π2sinnxdx0π2cos2xsinnxdx=InJJ=0π2cosx(cosxsinnx)dx=byparts[sinn+1xn+1cosx]0π20π2(sinx)sinn+1xn+1dx=1n+10π2sinn+2xdxIn+2=In1n+1In+2(1+1n+1)In+2=Inn+2n+1In+2=InIn+2=n+1n+2In

Leave a Reply

Your email address will not be published. Required fields are marked *