Question Number 137187 by mathocean1 last updated on 30/Mar/21
$${I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{{n}} {x}\:{dx} \\ $$$${Write}\:{a}\:{relation}\:{between}\:{I}_{{n}+\mathrm{2}} \:{and}\:{I}_{{n}} . \\ $$
Answered by Dwaipayan Shikari last updated on 30/Mar/21
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{{n}} {x}\:{dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)−\mathrm{1}} \left({x}\right){cos}^{\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)−\mathrm{1}} \left({x}\right){dx} \\ $$$$=\frac{\Gamma\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}\Gamma\left(\frac{{n}}{\mathrm{2}}+\mathrm{1}\right)}={J}_{{n}} \\ $$$${J}_{{n}+\mathrm{2}} =\frac{\Gamma\left(\frac{{n}+\mathrm{3}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}\Gamma\left(\frac{{n}}{\mathrm{2}}+\mathrm{2}\right)}=\frac{\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)}{\left(\frac{{n}}{\mathrm{2}}+\mathrm{1}\right)}{J}_{{n}} \\ $$
Answered by mathmax by abdo last updated on 30/Mar/21
$$\mathrm{I}_{\mathrm{n}+\mathrm{2}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{sin}^{\mathrm{n}} \mathrm{x}\:\mathrm{sin}^{\mathrm{2}} \:\mathrm{xdx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{sin}^{\mathrm{n}} \mathrm{x}\left(\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \mathrm{x}\right)\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{sin}^{\mathrm{n}} \mathrm{xdx}\:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{cos}^{\mathrm{2}} \mathrm{x}\:\mathrm{sin}^{\mathrm{n}} \mathrm{x}\:\mathrm{dx}=\mathrm{I}_{\mathrm{n}} −\mathrm{J} \\ $$$$\mathrm{J}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{cosx}\left(\mathrm{cosx}\:\mathrm{sin}^{\mathrm{n}} \mathrm{x}\right)\mathrm{dx}\:=_{\mathrm{by}\:\mathrm{parts}} \:\:\left[\frac{\mathrm{sin}^{\mathrm{n}+\mathrm{1}} \mathrm{x}}{\mathrm{n}+\mathrm{1}}\mathrm{cosx}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(−\mathrm{sinx}\right)\frac{\mathrm{sin}^{\mathrm{n}+\mathrm{1}} \mathrm{x}}{\mathrm{n}+\mathrm{1}}\mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{sin}^{\mathrm{n}+\mathrm{2}} \mathrm{xdx}\:\Rightarrow\mathrm{I}_{\mathrm{n}+\mathrm{2}\:} =\mathrm{I}_{\mathrm{n}} −\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\mathrm{I}_{\mathrm{n}+\mathrm{2}} \:\Rightarrow \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\right)\mathrm{I}_{\mathrm{n}+\mathrm{2}} =\mathrm{I}_{\mathrm{n}} \:\Rightarrow\frac{\mathrm{n}+\mathrm{2}}{\mathrm{n}+\mathrm{1}}\mathrm{I}_{\mathrm{n}+\mathrm{2}} =\mathrm{I}_{\mathrm{n}} \:\Rightarrow\mathrm{I}_{\mathrm{n}+\mathrm{2}} =\frac{\mathrm{n}+\mathrm{1}}{\mathrm{n}+\mathrm{2}}\mathrm{I}_{\mathrm{n}} \\ $$