Menu Close

I-pi-6-pi-3-cos-6-x-1-3sin-2-xcos-2-x-dx-




Question Number 143961 by SOMEDAVONG last updated on 20/Jun/21
I=∫_(π/6) ^(π/3) ((cos^6 x)/(1−3sin^2 xcos^2 x))dx=?
I=π6π3cos6x13sin2xcos2xdx=?
Answered by Dwaipayan Shikari last updated on 20/Jun/21
I=∫_(π/6) ^(π/3) ((cos^6 x)/(1−3sin^2 x cos^2 x))dx       ∫_ε ^δ f(δ+ε−x)dx=∫_ε ^δ f(x)dx  =∫_(π/6) ^(π/3) ((sin^6 x)/(1−3sin^2 xcos^2 x))=I    1−3sin^2 x cos^2 x=sin^6 x+cos^6 x  2I=∫_(π/6) ^(π/3) ((cos^6 x+sin^6 x)/(1−3sin^2 xcos^2 x))dx=∫_(π/6) ^(π/3) 1 dx=(π/6)  I=(π/(12))
I=π6π3cos6x13sin2xcos2xdxϵδf(δ+ϵx)dx=ϵδf(x)dx=π6π3sin6x13sin2xcos2x=I13sin2xcos2x=sin6x+cos6x2I=π6π3cos6x+sin6x13sin2xcos2xdx=π6π31dx=π6I=π12
Commented by SOMEDAVONG last updated on 21/Jun/21
Thanks sir!
Thankssir!

Leave a Reply

Your email address will not be published. Required fields are marked *