Menu Close

I-sec-x-1-csc-x-dx-




Question Number 141847 by iloveisrael last updated on 24/May/21
 I = ∫ ((sec x)/(1+csc x)) dx
I=secx1+cscxdx
Answered by MJS_new last updated on 24/May/21
∫((sec x)/(1+csc x))=       [t=tan (x/2) → dx=2cos^2  (x/2) dt]  =−4∫(t/((t−1)(t+1)^3 ))dt=  =−(1/2)∫(dt/(t−1))−2∫(dt/((t+1)^3 ))+∫(dt/((t+1)^2 ))+(1/2)∫(dt/(t+1))=  =−(1/2)ln (t−1) +(1/((t+1)^2 ))−(1/(t+1))+(1/2)ln (t+1) =  =−(t/((t+1)^2 ))+(1/2)ln ((t+1)/(t−1)) =...  =−((sin x)/(2(1+sin x)))+(1/2)ln ∣((cos x)/(1−sin x))∣ +C
secx1+cscx=[t=tanx2dx=2cos2x2dt]=4t(t1)(t+1)3dt==12dtt12dt(t+1)3+dt(t+1)2+12dtt+1==12ln(t1)+1(t+1)21t+1+12ln(t+1)==t(t+1)2+12lnt+1t1==sinx2(1+sinx)+12lncosx1sinx+C
Answered by iloveisrael last updated on 24/May/21
I= ∫ ((1/(cos x))/(1+(1/(sin x)))) dx = ∫ ((sin x)/(cos xsin x+cos x)) dx  I= ∫ ((sin x)/(cos x(sin x+1))) dx  I=∫ ((sin x(sin x−1))/(−cos^3 x)) dx  I=−∫ ((sin^2 x−sin x)/(cos^3 x)) dx  I=−{∫ sec^3 x dx −∫ sec x dx }−         ∫ ((d(cos x))/(cos^3 x))   I=ln ∣sec x+tan x∣+ (1/2)sec^2 x −        ∫ sec^3 x dx
I=1cosx1+1sinxdx=sinxcosxsinx+cosxdxI=sinxcosx(sinx+1)dxI=sinx(sinx1)cos3xdxI=sin2xsinxcos3xdxI={sec3xdxsecxdx}d(cosx)cos3xI=lnsecx+tanx+12sec2xsec3xdx

Leave a Reply

Your email address will not be published. Required fields are marked *