I-sec-x-1-csc-x-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 141847 by iloveisrael last updated on 24/May/21 I=∫secx1+cscxdx Answered by MJS_new last updated on 24/May/21 ∫secx1+cscx=[t=tanx2→dx=2cos2x2dt]=−4∫t(t−1)(t+1)3dt==−12∫dtt−1−2∫dt(t+1)3+∫dt(t+1)2+12∫dtt+1==−12ln(t−1)+1(t+1)2−1t+1+12ln(t+1)==−t(t+1)2+12lnt+1t−1=…=−sinx2(1+sinx)+12ln∣cosx1−sinx∣+C Answered by iloveisrael last updated on 24/May/21 I=∫1cosx1+1sinxdx=∫sinxcosxsinx+cosxdxI=∫sinxcosx(sinx+1)dxI=∫sinx(sinx−1)−cos3xdxI=−∫sin2x−sinxcos3xdxI=−{∫sec3xdx−∫secxdx}−∫d(cosx)cos3xI=ln∣secx+tanx∣+12sec2x−∫sec3xdx Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: k-0-C-n-k-2-Next Next post: Question-10774 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.