Menu Close

If-1-a-2-1-b-2-1-c-2-1-ab-1-bc-1-ca-then-prove-that-a-b-c-




Question Number 70312 by Shamim last updated on 03/Oct/19
If, (1/a^2 )+(1/b^2 )+(1/c^2 ) = (1/(ab))+(1/(bc))+(1/(ca)) then prove   that, a=b=c.
If,1a2+1b2+1c2=1ab+1bc+1cathenprovethat,a=b=c.
Commented by MJS last updated on 03/Oct/19
this is true for a, b, c ∈R  it′s false for a, b, c ∈C  b=a(−(1/2)−((√3)/2)i)∧c=a(−(1/2)+((√3)/2)i)   ((a),(b),(c) ) =a× ((1),((−(1/2)+((√3)/2)i)),((−(1/2)−((√3)/2)i)) )  is a solution   ((a),(b),(c) ) = ((a),(b),(((ab(a+b)±(√3)ab(a−b)i)/(2(a^2 −ab+b^2 )))) )  is a solution
thisistruefora,b,cRitsfalsefora,b,cCb=a(1232i)c=a(12+32i)(abc)=a×(112+32i1232i)isasolution(abc)=(abab(a+b)±3ab(ab)i2(a2ab+b2))isasolution
Answered by $@ty@m123 last updated on 03/Oct/19
Let (1/a)=x, (1/b)=y, (1/c)=z  ⇒x^2 +y^2 +z^2  =xy+yz+zx  ⇒x^2 +y^2 +z^2  −(xy+yz+zx)=0  ⇒2{x^2 +y^2 +z^2  −(xy+yz+zx)}=0  ⇒(x−y)^2 +(y−z)^2 +(z−x)^2 =0  ⇒x−y=0, y−z=0, z−x=0  ⇒x=y=z  ⇒a=b=c
Let1a=x,1b=y,1c=zx2+y2+z2=xy+yz+zxx2+y2+z2(xy+yz+zx)=02{x2+y2+z2(xy+yz+zx)}=0(xy)2+(yz)2+(zx)2=0xy=0,yz=0,zx=0x=y=za=b=c

Leave a Reply

Your email address will not be published. Required fields are marked *