Menu Close

If-2-x-3-y-6-z-find-the-value-of-1-x-1-y-1-z-




Question Number 8998 by tawakalitu last updated on 11/Nov/16
If  2^x  = 3^y  = 6^(−z)   find the value of :  (1/x) + (1/y) + (1/z)
If2x=3y=6zfindthevalueof:1x+1y+1z
Answered by Rasheed Soomro last updated on 12/Nov/16
If  2^x  = 3^y  = 6^(−z)   find the value of :  (1/x) + (1/y) + (1/z)  −−−−−−−−−−−−−−−−−−   2^x  = 3^y  = 6^(−z)           ⇒xlog2=ylog3=−zlog6  x=−z(((log6)/(log2))) , y=−z(((log6)/(log3)))  x^(−1) ={−z(((log6)/(log2)))}^(−1) ⇒(1/x)=− ((log2)/(zlog6))  y^(−1) ={−z(((log6)/(log3)))}^(−1) ⇒(1/y)=− ((log3)/(zlog6))  (1/x) + (1/y) + (1/z)=− ((log2)/(zlog6))− ((log3)/(zlog6))+(1/z)=((−log2−log3+log6)/(zlog6))        =((log2^(−1) +log3^(−1) +log6)/(zlog6))=((log((1/2)×(1/3)×6))/(zlog6))=((log1)/(zlog6))        =(0/(zlog6))=0  (1/x) + (1/y) + (1/z)=0
If2x=3y=6zfindthevalueof:1x+1y+1z2x=3y=6zxlog2=ylog3=zlog6x=z(log6log2),y=z(log6log3)x1={z(log6log2)}11x=log2zlog6y1={z(log6log3)}11y=log3zlog61x+1y+1z=log2zlog6log3zlog6+1z=log2log3+log6zlog6=log21+log31+log6zlog6=log(12×13×6)zlog6=log1zlog6=0zlog6=01x+1y+1z=0
Commented by tawakalitu last updated on 11/Nov/16
Thank you sir.
Thankyousir.
Commented by Theara last updated on 19/Nov/16

Leave a Reply

Your email address will not be published. Required fields are marked *