Menu Close

If-2-x-and-3-x-are-integers-for-some-x-R-must-x-be-an-integer-




Question Number 5185 by Yozzii last updated on 28/Apr/16
If  2^(x )  and  3^x  are integers for some  x∈R^+ , must x be an integer?
If2xand3xareintegersforsomexR+,mustxbeaninteger?
Answered by 123456 last updated on 28/Apr/16
2^x =a⇔x=log_2 a  3^x =b⇔x=log_3 b  log_2 a=log_3 b  k∈Z  a=2^(log_3 b) ,a∈Z⇒log_3 b=k⇔b=3^k ⇒x∈Z  b=3^(log_2 a) ,b∈Z⇒log_2 a=k⇔a=2^k ⇒x∈Z
2x=ax=log2a3x=bx=log3blog2a=log3bkZa=2log3b,aZlog3b=kb=3kxZb=3log2a,bZlog2a=ka=2kxZ
Commented by Yozzii last updated on 28/Apr/16
In line 5, a∈Z I think could also  mean 2^(log_3 b) =2^(log_2 n) =n for some n∈Z.  ⇒b=3^(log_2 n)    But b,n∈Z^+ ⇒n=2^j ∈Z⇒x=j∈Z    3^(log_2 a) =3^(log_3 q) ⇒a=2^(log_3 q)   ⇒q=3^r ⇒x=r∈Z^+ .
Inline5,aZIthinkcouldalsomean2log3b=2log2n=nforsomenZ.b=3log2nButb,nZ+n=2jZx=jZ3log2a=3log3qa=2log3qq=3rx=rZ+.

Leave a Reply

Your email address will not be published. Required fields are marked *