If-2cos-5pi-4-3x-cos-pi-4-3x-0-and-sin-2x-2y-cos-y-where-pi-4-x-pi-2-and-pi-4-y-pi-2-find-the-value-of-sin-2x-y-cos-2x-y-cos-2x-y-sin-2x-y- Tinku Tara June 3, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 142794 by EDWIN88 last updated on 05/Jun/21 If2cos(5π4+3x)cos(π4+3x)=0andsin(2x−2y)=cosywhereπ4⩽x⩽π2andπ4⩽y⩽π2.findthevalueof{sin(2x+y)cos(2x+y)cos(2x−y)sin(2x−y) Answered by Rasheed.Sindhi last updated on 05/Jun/21 2cos(5π4+3x)cos(π4+3x)=0cos(5π4+3x)=0∣cos(π4+3x)=05π4+3x=π2(2n−1)∣π4+3x=π2(2n−1)n∈Z3x=π2(2n−1)−5π4∣3x=π2(2n−1)−π4x=π6(2n−1)−5π12∣x=π6(2n−1)−π12x={2(2n−1)−5}π12∣x={2(2n−1)−1}π12x=(4n−7)π12∣x=(4n−3)π12π4⩽x⩽π2π4⩽(4n−7)π12⩽π2∣π4⩽(4n−3)π12⩽π23π⩽(4n−7)π⩽6π∣3π⩽(4n−3)π⩽6π3⩽(4n−7)⩽6∣3⩽(4n−3)⩽610⩽4n⩽13∣6⩽4n⩽952⩽n⩽134∣32⩽n⩽94212⩽n⩽314∣112⩽n⩽214n=3∣n=2x=(4n−7)π12∣x=(4n−3)π12x=(4(3)−7)π12∣x=(4(2)−3)π12x=5π12sin(2x−2y)=cosysin(2(5π12)−2y)=cosysin(5π6−2y)=sin(π2−y)5π6−2y=π2−yy=5π6−π2=5π−3π6⇒y=π3 Answered by MJS_new last updated on 05/Jun/21 2cos(5π4+3x)cos(π4+3x)=0sin6x−1=0⇒x=5π12⇒y=π3 Answered by Rasheed.Sindhi last updated on 06/Jun/21 ⟨∙∙⟩AnOtherWay⟨∙∙⟩2cos(5π4+3x)cos(π4+3x)⏟noticethatthediffisπ=0cos(π4+π+3x)cos(π4+3x)=0cos(π+θ)=−cosθ−cos(π4+3x)cos(π4+3x)=0cos2(π4+3x)=0cos(π4+3x)=0cos(π4+3x)=cos(π2(2n−1))π4+3x=π2(2n−1)x=13((2n−1)π2−π4)=2(2n−1)π−π12=(4n−3)π12π4⩽x⩽π2π4⩽(4n−3)π12⩽π23⩽4n−3⩽66⩽4n⩽932⩽n⩽94112⩽n⩽214n=2x=(4n−3)π12={4(2)−3}π12=5π12sin(2x−2y)=cosysin(2x−2y)=sin(π2−y)2x−2y=π2−yy=π3 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: e-x-2-2-dx-Next Next post: 0-16-2-3-of-2-5-1-8- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.