Question Number 140428 by byaw last updated on 07/May/21
$$\mathrm{If}\:\mathrm{4}{x}=\mathrm{3}\left(\mathrm{Mod}\:\mathrm{6}\right),\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{first}\:\mathrm{four}\:\mathrm{values}\:\mathrm{of}\:{x}. \\ $$
Commented by mr W last updated on 07/May/21
$$\mathrm{4}{x}\:{is}\:{even}. \\ $$$${but}\:{when}\:{it}\:{is}\:{divided}\:{by}\:\mathrm{6}\:{and}\:{the} \\ $$$${remainder}\:{is}\:\mathrm{3},\:{it}\:{means}\:\mathrm{4}{x}\:{must}\:{be} \\ $$$${odd}.\:{a}\:{number}\:{can}\:{not}\:{be}\:{even}\:{and}\:{odd} \\ $$$${at}\:{same}\:{time}.\:{therefore}\:{there}\:{is}\:{no} \\ $$$${solution},\:{i}.{e}.\:{the}\:{question}\:{is}\:{wrong}. \\ $$
Answered by JDamian last updated on 07/May/21
$$\mathrm{4}{x}=\mathrm{6}{q}+\mathrm{3} \\ $$$$ \\ $$$${As}\:{the}\:{left}\:{side}\:\left(\mathrm{4}{x}\right)\:{is}\:{even},\:{the}\:{rigth}\:{one} \\ $$$${should}\:{be}\:{too}…\:{but}\:\:\:\mathrm{6}{q}+\mathrm{3}\:\:\:\:{is}\:\boldsymbol{{odd}}… \\ $$