Menu Close

if-A-0-B-0-A-B-3-then-find-minimum-and-maximum-of-tan-A-tan-B-




Question Number 143858 by gsk2684 last updated on 19/Jun/21
if A≥0, B≥0, A+B=(Π/3) then  find minimum and maximum   of tan A.tan B
$$\mathrm{if}\:\mathrm{A}\geqslant\mathrm{0},\:\mathrm{B}\geqslant\mathrm{0},\:\mathrm{A}+\mathrm{B}=\frac{\Pi}{\mathrm{3}}\:\mathrm{then} \\ $$$$\mathrm{find}\:\mathrm{minimum}\:\mathrm{and}\:\mathrm{maximum}\: \\ $$$$\mathrm{of}\:\mathrm{tan}\:\mathrm{A}.\mathrm{tan}\:\mathrm{B}\: \\ $$
Answered by ajfour last updated on 19/Jun/21
(√3)=((p+q)/(1−pq))  ⇒ 1−pq=((p+q)/( (√3)))  pq=1−(((p+q)/( (√3))))  if p=q  p^2 +((2p)/( (√3)))−1=0  p=−(1/( (√3)))±(2/( (√3)))  p=(1/( (√3)))  ⇒  (pq)_(max) =(1/3)  (pq)_(min) =0
$$\sqrt{\mathrm{3}}=\frac{{p}+{q}}{\mathrm{1}−{pq}} \\ $$$$\Rightarrow\:\mathrm{1}−{pq}=\frac{{p}+{q}}{\:\sqrt{\mathrm{3}}} \\ $$$${pq}=\mathrm{1}−\left(\frac{{p}+{q}}{\:\sqrt{\mathrm{3}}}\right) \\ $$$${if}\:{p}={q} \\ $$$${p}^{\mathrm{2}} +\frac{\mathrm{2}{p}}{\:\sqrt{\mathrm{3}}}−\mathrm{1}=\mathrm{0} \\ $$$${p}=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\pm\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}} \\ $$$${p}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:\:\Rightarrow\:\:\left({pq}\right)_{{max}} =\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\left({pq}\right)_{{min}} =\mathrm{0} \\ $$
Commented by ajfour last updated on 19/Jun/21
A rectangle of given perimeter  has maximum area when  it is a square.
$${A}\:{rectangle}\:{of}\:{given}\:{perimeter} \\ $$$${has}\:{maximum}\:{area}\:{when} \\ $$$${it}\:{is}\:{a}\:{square}. \\ $$
Commented by gsk2684 last updated on 19/Jun/21
thank you sir. i have a doubt   that why did you take p=q
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{have}\:\mathrm{a}\:\mathrm{doubt}\: \\ $$$$\mathrm{that}\:\mathrm{why}\:\mathrm{did}\:\mathrm{you}\:\mathrm{take}\:\mathrm{p}=\mathrm{q} \\ $$
Commented by gsk2684 last updated on 21/Jun/21
thanks alot.
$$\mathrm{thanks}\:\mathrm{alot}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *